More species = more resilience

8 01 2014

reef fishWhile still ostensibly ‘on leave’ (side note: Does any scientist really ever take a proper holiday? Perhaps a subject for a future blog post), I cannot resist the temptation to blog about our lab’s latest paper that just came online today. In particular, I am particularly proud of Dr Camille Mellin, lead author of the study and all-round kick-arse quantitative ecologist, who has outdone herself on this one.

Today’s subject is one I’ve touched on before, but to my knowledge, the relationship between ‘diversity’ (simply put, ‘more species’) and ecosystem resilience (i.e., resisting extinction) has never been demonstrated so elegantly. Not only is the study elegant (admission: I am a co-author and therefore my opinion is likely to be biased toward the positive), it demonstrates the biodiversity-stability hypothesis in a natural setting (not experimental) over a range of thousands of kilometres. Finally, there’s an interesting little twist at the end demonstrating yet again that ecology is more complex than rocket science.

Despite a legacy of debate, the so-called diversity-stability hypothesis is now a widely used rule of thumb, and its even implicit in most conservation planning tools (i.e., set aside areas with more species because we assume more is better). Why should ‘more’ be ‘better’? Well, when a lot of species are interacting and competing in an ecosystem, the ‘average’ interactions that any one species experiences are likely to be weaker than in a simpler, less diverse system. When there are a lot of different niches occupied by different species, we also expect different responses to environmental fluctuations among the community, meaning that some species inherently do better than others depending on the specific disturbance. Species-rich systems also tend to have more of what we call ‘functional redundancy‘, meaning that if one species providing an essential ecosystem function (e.g., like predation) goes extinct, there’s another, similar species ready to take its place. Read the rest of this entry »





Rise of the phycologists

22 09 2011

Dead man's fingers (Codium fragile) - © CJA Bradshaw

I’ve had an interesting week. First, it’s been about 6 years since I was last in Japan, and I love coming here; the food is exquisite, the people are fantastic (polite, happy, accommodating), everything works (trains, buses, etc.) and most importantly, it has an almost incredible proportion of its native forests intact.

But it wasn’t for forests that I travelled to Japan (nor the sumo currently showing on the guest-room telly where I’m staying – love the sumo): I was here for a calcareous macroalgae workshop.

What?

First, what are ‘macroalgae’, and why are some ‘calcareous’? And why should anyone in their right mind care?

Good questions. Answers: 1. Seaweeds; 2. Many incorporate calcium carbonate into their structures as added structural support; 3. Read on.

Now, I’m no phycologist (seaweed scientist), but I’m fascinated by this particular taxon. I’ve written a few posts about their vital ecological roles (see here and here), but let me regale you with some other important facts about these amazing species.

Some Japanese macroalgae - © CJA Bradshaw

There are about 12,000 known species of macroalgae described by phycologists, but as I’ve learnt this week, this is obviously a vast underestimate. For most taxa that people are investigating now using molecular techniques, the genetic diversity is so high and so geographically structured that there are obviously a huge number of ‘cryptic’ species within our current taxonomic divisions. This could mean that we’re out by up to a factor of 2 in the number of species in the world.

Another amazing fact – about 50 % of all known seaweed species are found in just two countries – Japan and Australia (hence the workshop between Japanese and Australian phycologists). Southern Australia in particular is an endemism hotspot.

Ok. Cool. So far so good. But so what? Read the rest of this entry »





No substitute for primary forest

15 09 2011

© Romulo Fotos http://goo.gl/CrAsE

A little over five years ago, a controversial and spectacularly erroneous paper appeared in the tropical ecology journal Biotropica, the flagship journal of the Association for Tropical Biology and Conservation. Now, I’m normally a fan of Biotropica (I have both published there several times and acted as a Subject Editor for several years), but we couldn’t let that paper’s conclusions go unchallenged.

That paper was ‘The future of tropical forest species‘ by Joseph Wright and Helene Muller-Landau, which essentially concluded that the severe deforestation and degradation of tropical forests was not as big a deal as nearly all the rest of the conservation biology community had concluded (remind you of climate change at all?), and that regenerating, degraded and secondary forests would suffice to preserve the enormity and majority of dependent tropical biodiversity.

What rubbish.

Our response, and those of many others (including from Toby Gardner and colleagues and William Laurance), were fast and furious, essentially destroying the argument so utterly that I think most people merely moved on. We know for a fact that tropical biodiversity is waning rapidly, and in many parts of the world, it is absolutely [insert expletive here]. However, the argument has reared its ugly head again and again over the intervening years, so it’s high time we bury this particular nonsense once and for all.

In fact, a few anecdotes are worthy of mention here. Navjot once told me one story about the time when both he and Wright were invited to the same symposium around the time of the initial dust-up in Biotropica. Being Navjot, he tore off strips from Wright in public for his outrageous and unsubstantiated claims – something to which Wright didn’t take too kindly.  On the way home, the two shared the same flight, and apparently Wright refused to acknowledge Navjot’s existence and only glared looks that could kill (hang on – maybe that had something to do with Navjot’s recent and untimely death? Who knows?). Similar public stoushes have been chronicled between Wright and Bill Laurance.

Back to the story. I recall a particular coffee discussion at the National University of Singapore between Navjot Sodhi (may his legacy endure), Barry Brook and me some time later where we planned the idea of a large meta-analysis to compare degraded and ‘primary’ (not overly disturbed) forests. The ideas were fairly fuzzy back then, but Navjot didn’t drop the ball for a moment. He immediately went out and got Tien Ming Lee and his new PhD student, Luke Gibson, to start compiling the necessary studies. It was a thankless job that took several years.

However, the fruits of that labour have now just been published in Nature: ‘Primary forests are irreplaceable for sustaining tropical biodiversity‘, led by Luke and Tien Ming, along with Lian Pin Koh, Barry Brook, Toby Gardner, Jos Barlow, Carlos Peres, me, Bill Laurance, Tom Lovejoy and of course, Navjot Sodhi [side note: Navjot died during the review and didn't survive to hear the good news that the paper was finally accepted].

Using data from 138 studies from Asia, South America and Africa comprising 2220 pair-wise comparisons of biodiversity ‘values’ between forests that had undergone some sort of disturbance (everything from selective logging through to regenerating pasture) and adjacent primary forests, we can now hammer the final nails into the coffin containing the putrid remains of Wright and Muller-Landau’s assertion – there is no substitute for primary forest. Read the rest of this entry »





Tropical forests cooking their biodiversity

5 05 2011

Another ‘hot’ essay by Bill Laurance recently published online by Yale Environment 360 (a publication of the Yale University School of Forestry & Environmental Studies). Bill asked me to relay it on ConservationBytes.com, so here it is in full:

Much attention has been paid to how global warming is affecting the world’s polar regions and glaciers. But a leading authority on tropical forests [that would be Bill] warns that rising temperatures could have an equally profound impact on rainforests and are already taking a toll on some tropical species.

On Jan. 12, 2002, in the Australian state of New South Wales, biologist Justin Welbergen was observing a colony of flying foxes for his Ph.D. research. The temperatures that day on Australia’s subtropical, eastern coast reached record highs, soaring to 42.9 ° C (109 ° F) at the weather station closest to Welbergen’s study site — nearly 8 ° C higher than the average summer maximum temperature.

The flying foxes, or giant fruit bats, normally just doze in the treetops through the day, but on this afternoon they were fanning themselves, panting frantically, jostling for shady spots, and licking their wrists in a desperate effort to cool down. Suddenly, when the thermometer hit 42 ° C, the bats began falling from the trees. Most quickly died. Welbergen and his colleagues counted 1,453 flying foxes that died from the heat in one colony alone. The scorching heat that day killed at least 2,200 additional flying foxes in eight other colonies along a 250-kilometre stretch of coastline. All the deaths occurred in colonies where temperatures soared above 41.7 ° C. Read the rest of this entry »





The rarity of commonness

18 08 2009

I’m attending the 10th International Congress of Ecology (INTECOL) in Brisbane this week and I have just managed to find (a) an internet connection and (b) a small window to write this post.

I have to say I haven’t been to a good plenary talk for some time – maybe it’s just bad luck, but often plenary talks can be less-than-inspiring.

Not so for INTECOL this year. I was very pleased to have the opportunity to listen to biodiversity guru Professor Kevin Gaston of the University of Sheffield give a fantastic talk on… common species (?!).

clones

If you have followed any of Kevin’s work, you’ll know he literally wrote the book on rarity – what species rarity is, how to measure it and what it means for preserving biodiversity as a whole.

Now he’s championing (in a very loose sense) the importance of common species because it is these taxa, he argues, that provide the backbone to the persistence of all biodiversity.

Yes, we conservation biologists have tended to focus on the rare and endemic species to make certain we have as much diversity in species (and genetic material) as possible when conserving habitats.

There are a lot more rare species than common ones, and the most common species (i.e., the ones you most often see) tend to have the broadest distributions. We know from much previous work that having a broad distribution reduces extinction risk, so why should we be concerned about common species?

Kevin made a very good point – if you turn the relationship on its head somewhat, you can state that the state of ‘commonness’ is itself ‘rare’. In fact, only about 25 % of the most common species account for about 90-95 % of ALL individuals. He used an interesting (and scary) example to show what this can mean from an extinction perspective. Although very back-of-the-envelope, there are about 2000 individual birds in a km2 of tropical forest; we are losing between 50000 and 120000 km2 of tropical forest per year, so this translates into the loss of about 100 to 240 million individual birds per year; this is the sum total of all birds in Great Britain (a bird-mad country). Yet where do we have the best information about birds? The UK.

Commonness is also geologically transient, meaning that just because you are a common species at some point in your evolutionary history doesn’t mean you have always been or always will be. In fact, most species never do become common.

But it is just these ‘rare’ common that drive the principal patterns we see globally in community structure. The true ‘rare’ species are, in fact, pretty crap predictors of biodiversity patterns. Kevin made a good point – when you look at a satellite image of a forest, it’s not all the little rare species you see, it’s the 2 or 3 most common tree species that make up the forest. Lose those, and you lose everything else.

Indeed, common species also form most trophic structure (the flow of energy through biological communities). Take away these, and ecosystem function degrades. They also tend to have the highest biomass and provide the structure that supports all those millions of rare species. Being common is quite an important job.

Kevin stated that the world is now in a state where many of the so-called common species are in fact, “artificially” common because of how much we’ve changed the planet. It is these benefactors of our world-destroying machinations that are now in decline themselves, and it is for this reason we should be worried.

When you start to see these bastions of ecosystems start to drop off (and the drop is usually precipitous because we don’t tend to notice their loss until they suddenly disappear), then you know we’re in trouble. And yet, even though once common, few, if any, once-common species have come back after a big decline.

So what does this mean for the way we do biodiversity research? Kevin proposes that we need a lot more good monitoring of these essential common species so that we can understand their structuring roles in the community and more importantly, be able to track their change before ecosystem collapse occurs. The monitoring is crucial – it wasn’t the demise of small companies that signalled the 2007 stock market crash responsible for the Global Financial Crisis in which we now find ourselves, the signal was derived from stock data obtained from just a few large (i.e., ‘common’) companies. All the small companies (‘rare’) ones then followed suit.

A very inspiring, worrying and somewhat controversial talk. Watch out for more things ‘Gaston’ on ConservationBytes.com in the near future.

CJA Bradshaw

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl





Conservation Scholars: Navjot Sodhi

3 02 2009

The Conservation Scholars series continues now with conservation biologists that were not highlighted in our book Tropical Conservation Biology (where we produced a series of ‘Spotlights’ describing the contributions of great thinkers in conservation science). Each highlight of a Conservation Scholar includes a small biography, a list of major scientific publications and a Q & A on the person’s particular area of expertise.

I thought I’d start this new batch with one of my good friends and colleagues, Navjot Sodhi. He is our eleventh Conservation Scholar…

Biography

I am currently Professor of Conservation Ecology at the National University of Singapore. I received my PhD from the University of Saskatchewan (Canada), and I have been studying the effects of rain forest loss and degradation on Southeast Asian fauna and flora for over the last 13 years. I have published over 100 scientific papers in international and regional scientific journals such as Nature, Science, Trends in Ecology and Evolution, Annual Review of Ecology, Evolution and Systematics, Auk, Current Biology, BioScience, Ecological Applications, Journal of Applied Ecology, Conservation Biology, Biological Conservation, and Biodiversity and Conservation. I have written/edited several books/monographs such as Southeast Asian Biodiversity in Crisis (2006, Cambridge University Press), Winged Invaders: ‘Pest’ birds of Asia-Pacific (2006, SNP, Singapore), Tropical Conservation Biology (2007, Blackwell) and Biodiversity and Human Livelihoods in Protected Areas: case studies from the Malay Archipelago (2008, Cambridge University Press), and I am currently co-editing a textbook called Conservation Biology  for All (2009, Oxford University Press).  I have also spent time at Harvard University as a Bullard Fellow (2001-02) and Hrdy Fellow (2008-09) where I now hold an adjunct associate position. I am (or have been) an Associate Editor/Editor of prestigious journals such as Conservation Biology, Biological Conservation, Animal Conservation, the Auk and Biotropica. Read the rest of this entry »





Save the biggest (and closest) ones

12 11 2008

© somapsychedelica

© somapsychedelica

A paper we recently wrote and published in Biological Conservation entitled Using biogeographical patterns of endemic land snails to improve conservation planning for limestone karsts lead by my colleague Reuben Clements of WWF has recently been highlighted at Mongabay.com. Our main result was that following the basic tenets of the theory of island biogeography, the largest, least-isolated limestone karsts in South East Asia (biologically rich limestone outcrops formed millions of years ago by the deposition of calcareous marine organisms) have the greatest proportion of endemic land snails (a surrogate taxon for uniqueness among other species). I’ll let Rhett at Mongabay.com do the rest (see original post):

Researchers have devised a scientific methodology for prioritizing conservation of limestone karsts, biologically-rich outcroppings found in Southeast Asia and other parts of the world. The findings are significant because karsts – formed millions of years ago by sea life – are increasingly threatened by mining and other development.

Using data from 43 karsts across Peninsular Malaysia and Sabah, authors led by Reuben Clements of WWF-Malaysia reported that larger karsts support greater numbers of endemic snails – a proxy for biological uniqueness among other species – making them a priority for protection.

“Larger areas tend to have greater habitat diversity, which enables them so support a higher number of unique species.” said Clements, species conservation manager for WWF-Malaysia.

With a variety of habitats including sinkholes, caves, cliffs, and underground rivers, and separated from other outcroppings by lowland areas, karsts support high levels of endemism among insects, snails, fish, plants, bats and other small mammals. Animals that inhabit karsts provide humans with important services including pest control, pollination, and a sustainable source of income (swiftlet nests used for bird nest soup, a Chinese delicacy, are found in karst caves). But karsts are increasingly under threat, especially from mining for cement and marble. An earlier study by Clements showed that limestone quarrying is increasing in Southeast Asia by 5.7 percent a year – the highest rate in the world – to fuel the region’s construction boom. The biodiversity of karsts – especially among animals that move to surrounding areas to feed – is also at risk from destruction of adjacent ecosystems, often by loggers or for agriculture.

Clements says the new study, which is published in the November issue of the journal Biological Conservation, will help set conservation priorities for karsts.

“The protection of karsts has been mainly ad hoc and they are usually spared from quarrying by virtue of being situated within state and national parks, or if they possess some form of aesthetic or cultural value,” he said. “Taking Peninsular Malaysia for example, our results suggest that we should set aside larger karsts on both sides of the Titiwangsa mountain range for protection if we want to maximize the conservation of endemic species. Protecting karsts on one side of the mountain chain is not enough.”

“With our findings, we hope that governments would reconsider issuing mining concessions for larger karsts as they tend to be more biologically important,” Clements said.





Conservation Scholars: Norman Myers

24 09 2008

This new series on ConservationBytes.com takes a page (quite literally) out of our book Tropical Conservation Biology (Sodhi, Brook & Bradshaw) – therein we produced a series of ‘Spotlights’ describing the contributions of great thinkers to conservation science. Each highlight of a Conservation Scholar includes a small biography, a list of major scientific publications and a Q & A on the person’s particular area of expertise. I will publish the 10 Conservation Scholars produced in the first edition of the book here on ConservationBytes.com, followed by highlights from many other notable conservation scientists thereafter.

Our first Conservation Scholar is Norman Myers

Biography

My graduate education was based on systems ecology and resource economics, with lots of demography, sociology, ethics, forestry, and lengthy et cetera thrown in. By the time I had completed my PhD at Berkeley, I was solidly disposed to specialise in being a generalist. I also decided that I was not a team player, and that I would be better off as a lone-wolf consultant in Environment and Development. I strongly recommend to anybody embarking on a career to find one that keeps their options open. In a former age it was okay to say at age 20 that you wanted to spend the next 50 years being a lawyer or a doctor or something of that sort. But today things are different. Within just another 10 years, the world will have changed out of sight, and you will have changed too, so you might well encounter a need to change horses in mid-career. I actually entered postgraduate school at the advanced age of 35, having been a colonial officer for my first career, a high school teacher for my second, a professional photographer for my third, a journalist/book writer for my fourth, and, after Berkeley, a consultant. At age 72, I am pondering what I could try for a sixth career.

Major Publications

Questions and Answers

1. Have ‘biodiversity hotspots‘ proven to be a useful concept for applied conservation?

Yes, the biodiversity hotspots thesis has (if I might indulge my immodesty) proved to be an especially useful concept for applied conservation. At any rate, it has attracted funding to the tune of US$850 million from the World Bank, Conservation International, the MacArthur and Moore Foundations, and numerous NGOs. For fully two decades before I first formulated the hotspots thesis in the mid-1980s, I had been struck that conservation bodies had been spreading their all-too-inadequate funds in terms of a bit for this species, a bit for that species, and so on, and not really making a big enough impression with any species (for the most part at least). There were no logically derived priorities in play. Note that my hotspots thesis is but one way of postulating a priority ranking, and there are a lot of others, despite protests from some quarters that I was seeking a monopoly over conservation options.

2. Which tropical hotspots are in most urgent need of protection and management?

The hotspots in most urgent need of protection and management are Madagascar, Philippines, Sundaland, Atlantic Coastal Forest of Brazil, the Caribbean, Indo-Burma, Western Ghats/Sri Lanka, Eastern Arc and Coastal Forests of Tanzania/Kenya and Mediterranean Basin.

3. Do you think that the current media focus on climate change is shifting emphasis away from the more immediate, direct threats to biodiversity such as deforestation?

No. The current media focus on climate change should surely be complementary to long-standing and more immediate threats such as tropical deforestation. But note that all major environmental issues of today are intricately interlinked; for instance, deforestation can often increase the warming effect of climate change (bare earth absorbs more heat than thick vegetation).

4. What are the most urgent research problems now facing tropical conservation biology?

I consider that the urgent research problems facing tropical conservation biology are: (1) What are the socio-economic and politico-cultural factors that serve as root causes of deforestation (e.g., perverse subsidies)? (2) What are some interdependencies at work, e.g., how far does forest conservation and reforestation in temperate and boreal zones merely shift logging pressure onto tropical forests? (3) Which sectors of tropical biotas could serve as evolutionary hotspots, i.e., communities that can foster “bounce back” processes, notably speciation, when the current biotic crisis has played itself out?

5. In your opinion, in what condition will tropical ecosystems be at the end of the 21st century?

I fear that tropical ecosystems will be, by the end of the 21st Century, badly battered at best, due to population pressures, socio-economic forces, and political incompetence and/or ignorance and/or corruption. But year 2100 is far too distant – as is 2050 – for one to make any informed or rational prognosis.

CJA Bradshaw

(with thanks to Navjot Sodhi, Barry Brook, Ward Cooper, Wiley-Blackwell and Norman Myers for permission to reproduce the text – buy your copy of Tropical Conservation Biology here)

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl





Cost, not biodiversity, dictates decision to conserve

26 08 2008

One for the Potential list:

© Ç. Sekerçioglu
© Ç. Sekercioglu

I’ve just read a great new paper by Bode et al. (2008) entitled Cost-effective global conservation spending is robust to taxonomic group.

After the hugely influential biodiversity ‘hotspot concept hit the global stage, there was a series of subsequent research papers examining just how we should measure the ‘biodiversity’ component of areas needing to be conserved (and invested in). The problem was that depending on which taxa you looked at, and what measure of ‘biodiversity’ you used (e.g., species richness, endemism, latent threat, evolutionary potential, functional redundancy), the priority list of where, how much and when to invest in conservation differed quite a lot. In other words, the congruency among listed areas was rather low (summarised nicely in Thomas Brooks‘ paper in Science Global biodiversity conservation priorities and examined also by Orme et al. 2005). This causes all sorts of problems for conservation investment planners – what to invest in and where?

Bode and colleagues’ newest paper demonstrates at least for endemism, the taxon on which you base your assessment is much less important for maximising species conservation than factors such as land cost and the degree of threat (e.g., as measured by the IUCN Red List).

Of course, their findings could be considered too simplistic because they don’t (couldn’t) evaluate other potentially more important components of ‘biodiversity’ such as genetic history (evolutionary potential) or ecological functional redundancy (the idea that a species becomes more important to conserve if no other species provide the same ecosystem functions); however, I think this paper is something of a landmark in that it shows that ‘socio-economic’ uncertainty generally outweighs uncertainty due to biodiversity measures. The long and short of this is that planners should start investing if there is evidence of heightened threat and land is cheap.

A few other missing bits means that the paper is more heuristic than prescriptive (something the authors state right up front). There is no attempt to take biodiversity, threat or land cost changes arising from climate change into account (see relevant post here), so some of the priorities are questionable. Related to this is the idea of latent risk (see relevant paper by Cardillo et al. 2006) – what’s not necessarily threatened now but likely will be in the very near future. Also, only a small percentage of species are listed in the IUCN Red List (see relevant post here), so perhaps we’re missing some important trends. Finally, I had to note that almost all the priority areas outlined in the paper happened to be in the tropics, which stands to reason given the current and ongoing extinction crisis occurring in this realm. See a more detailed post on ‘tropical turmoil‘.

Despite the caveats, I think this could provide a way forward to the conservation planning stalemate.

CJA Bradshaw

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl





Classics: Biodiversity Hotspots

25 08 2008

‘Classics’ is a category of posts highlighting research that has made a real difference to biodiversity conservation. All posts in this category will be permanently displayed on the Classics page of ConservationBytes.com

© R. Wainscoat

© R. Wainscoat

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858

According to Google Scholar, this paper has over 2500 citations. Even though it was published less than a decade ago, already Myers and colleagues’ ‘hotspots’ concept has become the classic lexicon for, as they defined it, areas with high species endemism and degradation by humans. In other words, these are places on the planet (originally only terrestrial, but the concept has been extended to the marine realm) where at the current rates of habitat loss, exploitation, etc., we stand to lose far more irreplaceable species. The concept has been criticised for various incapacities to account for all types of threats – indeed, many other prioritisation criteria have been proposed (assessed nicely by Brooks et al. 2006 and Orme et al. 2005), but it’s the general idea proposed by Myers and colleagues that has set the conservation policy stage for most countries. One little gripe here – although the concept ostensibly means areas of high endemic species richness AND associated threat, people often take the term ‘hotspot’ to mean just a place with lots of species. Not so. Ah, the intangible concept of biodiversity!

CJA Bradshaw

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl








Follow

Get every new post delivered to your Inbox.

Join 5,316 other followers

%d bloggers like this: