Western Australia’s moronic shark cull

4 07 2014

another stupid politicianA major media release today coordinated by Jessica Meeuwig in Western Australia makes the (obvious) point that there’s no biological justification to cull sharks.

301 Australian and International Scientists experts have today provided their submission to the Western Australia Environmental Protection Authority (EPA), rejecting the scientific grounds for the proposed three-year drum-line programme.

Coordinating scientist, Professor Jessica Meeuwig from the University of Western Australia said:

“To have over 300 researchers, including some of the world’s top shark specialists and marine ecologists, all strongly agreeing that there is no scientific basis for the lethal drum-line programme, tells you how unjustified the government’s proposal is. If the EPA and the Federal Minister for the Environment are using science for decisions, the drum-line proposal should not be approved.”

The experts agree that the proposal presents no evidence that the lethal drum-line programme, as implemented, will improve ocean safety. It ignores evidence from other hook-based programs in Hawaii and Queensland that have been shown to be ineffective in reducing shark attacks on humans.

Dr. Christopher Neff from the University of Sydney stated:

“There is no evidence that drum lines reduce shark bites. The Western Australia EPA now faces a question of science versus politics with global implications because it is considering establishing a new international norm that would allow for the killing of protected white sharks.”

The drum lines are ineffective and indiscriminate, with 78% of the sharks captured not considered ‘threatening’ to humans. Yet, scientifically supported, non-lethal alternatives such as the South African ‘Shark Spotter’ and Brazil’s ‘Tag and Remove’ programmes are not adequately assessed as viable options for Western Australia. Read the rest of this entry »

South Australia’s tattered environmental remains

16 04 2014
State budget percentage expenditures for health, education and environment

South Australia State budget percentage expenditures for health, education and environment

Yesterday I gave the second keynote address at the South Australia Natural Resource Management (NRM) Science Conference at the University of Adelaide (see also a brief synopsis of Day 1 here). Unfortunately, I’m missing today’s talks because of an acute case of man cold, but at least I can stay at home and work while sipping cups of hot tea.

Many people came up afterwards and congratulated me for “being brave enough to tell the truth”, which both encouraged and distressed me – I am encouraged by the positive feedback, but distressed by the lack of action on the part of our natural resource management leaders.

The simple truth is that South Australia’s biodiversity and ecosystems are in shambles, yet few seem to appreciate this.

So for the benefit of those who couldn’t attend, I’ve uploaded the podcast of my slideshow for general viewing here. I’ve also highlighted some key points from the talk below: Read the rest of this entry »

Biodiversity needs more than just unwanted leftovers

28 02 2014

calm oceanThe real measure of conservation progress, on land or in the sea, is how much biodiversity we save from threatening processes.

A new paper co-authored by Memorial University’s Dr Rodolphe Devillers and an international group of researchers argues that established global marine protected areas are too often a case of all show with no substance and do not adequately protect the most vulnerable areas of the world’s oceans.

“There is a big pressure internationally to expand global MPA coverage from around 3 % of the oceans to 10 %, resulting in a race from countries to protect large and often unused portions of their territorial waters for a minimal political cost,” said Mr. Devillers. “Marine protected areas are the cornerstone of marine conservation, but we are asking whether picking low-hanging fruit really makes a difference in the long-term, or if smaller areas currently under threat should be protected before, or at the same time as, those larger areas that are relatively inaccessible and therefore less used by people.

“We need to stop measuring conservation success in terms of square kilometres,” he added. “The real measure of conservation progress, on land or in the sea, is how much biodiversity we save from threatening processes. Metrics such as square kilometres or percentages of jurisdictions are notoriously unreliable in telling us about the true purpose of protected areas.” Read the rest of this entry »

Noisy oceans

20 01 2014
killers & boats
Killer whales are social animals that navigate all oceans and seas between the Arctic and Antarctica – they can be regarded eusocial since reproduction ceases around 40 years of age and menopausal females help care for offspring: like humans [13, 14]. Group cohesion in killer whales relies on a complex repertoire of vocalisations including clicks, whistles and calls. Sounds are instrumental for prey searching, orientation and communication. Foote [5] focused on calls, which are made up of series of discrete sounds that resemble squeaks, screams, and squawks to the human ear. It has been postulated that individuals learn to vocalise by imitation of peers of the same pod, and that only the base structure has a genetic, hence heritable, component [15]. Regardless, pods develop regional dialects. Those dialects, along with aspects of diet, genetics, morphology and behaviour, differentiate the three main lineages of killer whales (resident, transient and open sea) that might have been genetically isolated for ~ 150 to 700 thousand years and, potentially represent different taxa [16, 17]. The species might abandon the IUCN conservation category of ‘Data Deficient’ as soon its taxonomic uncertainty is resolved.Resident killer whales form matrilineal groups of 2 to 15 individuals  (the matriarch and her offspring) – known as pods, in turn subdivided into subpods centred around grandmothers and great-grandmothers. The Southern Resident population is regarded as an acoustic clan comprising 3 pods currently numbering 81 individuals = 26 (J pod) + 19 (K pod) + 36 (L pod) (2013 survey), among whom the matriarch Granny is the oldest at 103 years! This clan feeds mainly on fish, and dwells in the coastal waters between British Columbia (Canada) and Washington State (USA), particularly south of Vancouver Island – nothing is known about where they spend the winter. The clan lost 20 % of its members between 1995 & 2001, and 13 more by 2013, and now faces the decline of its main prey: Chinook salmon (Oncorhynchus tshawytscha) [18]. The two pics show two sub pods of this clan swimming close to a whale-watching boat near Friday Harbour (San Juan Island) and a Chinese ship at Puget Sound (Seatle, USA). Photo credits: Marla Holt, NOAA/NMFS Northwest Fisheries Sciences Center.

Acoustic pollution has become a transnational issue, particularly in marine ecosystems [1] by virtue of the physical fact that sounds travel in water farther and faster than in air. In our noisy, modern world, many species are now forced to modify their vocal repertoire in response to noise. The pivotal social role that vocalisations play in all cetacean species makes these predators and filter feeders particularly vulnerable to this environmental problem.

Last night, an ambulance siren woke me, only seconds before the neighbour’s washing machine started spinning, and a good friend of mine rang from overseas. Gradually more and more people are living in societies plugged in to noisy mechanical and electronic devices 24 hours a day, 356 days a year.

Engine-powered vehicles are the main source of anthropogenic noise, and their numbers can grow even at a higher rate than the human population – so spreading not only diseases [2] but also decibels over a global network of travelling routes. In an ecological context, we refer to noise as a kind of sound (= energy wave detected by an auditory system) that is not considered a biologically meaningful cue by wildlife (including us) and might also cause physiological stress. Experts refer to ‘masking’ as those situations in which noise interferes the perception or emission of sounds that matter to the life history of species – a global concern in both terrestrial [3] and aquatic [4] ecosystems.

Andy Foote [5] has assessed the effect of vessel traffic on the vocal behaviour of the three pods forming the Southern Resident population of killer whales (Orcinus orca¸ see video). He recorded calls from these cetaceans from a ship, and through an array of submarine microphones in Haro Straight, between San Juan Island (Washington State, USA) and Vancouver Island (British Columbia, Canada). Between the 1990s and the 2000s, local traffic density had multiplied by a factor of 5 and currently, > 20 whale-watching vessels follow these killer whales daily among an active fleet of > 70 commercial vessels. Foote compared call length through 35 hours of underwater killer whale recordings over three periods (1977-1981, 1989-1992, 2001-2003), each comprising situations in which the pods were exposed to both noisy and quiet environments. Over the study, call length varied between 0.3 and 2.0 seconds; while on average, L-pod calls were the shortest (0.6-0.8 seconds), and J-pod calls the longest (0.9-1.0 seconds). Read the rest of this entry »

More species = more resilience

8 01 2014

reef fishWhile still ostensibly ‘on leave’ (side note: Does any scientist really ever take a proper holiday? Perhaps a subject for a future blog post), I cannot resist the temptation to blog about our lab’s latest paper that just came online today. In particular, I am particularly proud of Dr Camille Mellin, lead author of the study and all-round kick-arse quantitative ecologist, who has outdone herself on this one.

Today’s subject is one I’ve touched on before, but to my knowledge, the relationship between ‘diversity’ (simply put, ‘more species’) and ecosystem resilience (i.e., resisting extinction) has never been demonstrated so elegantly. Not only is the study elegant (admission: I am a co-author and therefore my opinion is likely to be biased toward the positive), it demonstrates the biodiversity-stability hypothesis in a natural setting (not experimental) over a range of thousands of kilometres. Finally, there’s an interesting little twist at the end demonstrating yet again that ecology is more complex than rocket science.

Despite a legacy of debate, the so-called diversity-stability hypothesis is now a widely used rule of thumb, and its even implicit in most conservation planning tools (i.e., set aside areas with more species because we assume more is better). Why should ‘more’ be ‘better’? Well, when a lot of species are interacting and competing in an ecosystem, the ‘average’ interactions that any one species experiences are likely to be weaker than in a simpler, less diverse system. When there are a lot of different niches occupied by different species, we also expect different responses to environmental fluctuations among the community, meaning that some species inherently do better than others depending on the specific disturbance. Species-rich systems also tend to have more of what we call ‘functional redundancy‘, meaning that if one species providing an essential ecosystem function (e.g., like predation) goes extinct, there’s another, similar species ready to take its place. Read the rest of this entry »

Shrinking global range projected for the world’s largest fish

7 08 2013
© W. Osborn (AIMS)

© W. Osborn (AIMS)

My recently finished PhD student, Ana Sequeira, has not only just had a superb paper just accepted in Global Change Biology, she’s recently been offered (and accepted) a postdoctoral position based at the University of Western Australia‘s Oceans Institute (in partnership with AIMS and CSIRO). As any supervisor, I’m certainly pleased when a student completes her PhD, but my pride as an academic papa truly soars when she gets her first job. Well done, Ana. This post by Ana is about her latest paper.

Following our previous whale shark work (see herehereherehere, here, here and here), especially the recent review where we inferred global connectivity and suggest possible pathways for their migration, we have now gone a step further and modelled the habitat suitability for the species at at global scale. This paper sets a nice scene regarding current habitat suitability, which also demonstrates the potential connectivity pathways we hypothesised previously. But the paper goes much further; we extend our predictions to a future scenario for 2070 when water temperatures are expected to increase on average by 2 °C.

Sequeira et al_GCB_Figure 3

Global predictions of current seasonal habitat suitability for whale sharks. Black triangles indicate known aggregation locations. Solid line delineates areas where habitat suitability > 0.1 was predicted.

Regarding the current range of whale sharks (i.e., its currently suitable habitat), we already know that whale sharks span latitudes between about 35 º North to South. We also know that this geographical range has been exceeded on several occasions. What we did not know was whether conditions were suitable enough for whale sharks to cross from the Indian Ocean to the Atlantic Ocean – in other words, whether they could travel between ocean basins south of South Africa. Our global model results demonstrate that suitable habitat in this region does exist at least during the summer, thus supporting our hypotheses regarding global connectivity!

It’s true that the extensive dataset we used (30 years’ worth of whale shark sightings collected by tuna purse seiners in the three major oceans – data provided by the IRD, IOTC and SPC) has many caveats (as do all opportunistically collected data), but we went to great trouble to deal with them in this paper (you can request a copy here or access it directly here). And the overall result: the current global habitat suitability for whale sharks does agree well with current locations of whale shark occurrence, with the exception of the Eastern Pacific for where we did not have enough data to validate. Read the rest of this entry »

Our national parks must be more than playgrounds or paddocks

24 05 2013

Convo TweetsIt’s interesting when a semi-random tweet by a colleague ends up mobilising a small army of scientists to get pissed off enough to co-write an article. Euan Ritchie of Deakin University started it off, and quickly recruited me, Mick McCarthy, David Watson, Ian Lunt, Hugh Possingham, Bill Laurance and Emma Johnston to put together the article. It’s a hugely important topic, so I hope it generates a lot of discussion and finally, some bloody action to stop the rapid destruction of this country’s national parks system.

Note: Published simultaneously on The Conversation.

It’s make or break time for Australia’s national parks.

National parks on land and in the ocean are dying a death of a thousand cuts, in the form of bullets, hooks, hotels, logging concessions and grazing licences. It’s been an extraordinary last few months, with various governments in eastern states proposing new uses for these critically important areas.

Australia’s first “National Park”, established in 1879, was akin to a glorified country club. Now called the “Royal National Park” on the outskirts of Sydney, it was created as a recreational escape for Sydney-siders, with ornamental plantations, a zoo, race courses, artillery ranges, livestock paddocks, deer farms, logging leases and mines.

Australians since realised that national parks should focus on protecting the species and natural landscapes they contain. However, we are now in danger of regressing to the misguided ideals of the 19th Century.

Parks under attack

In Victoria, new rules will allow developers to build hotels and other ventures in national parks. In New South Wales, legislation has been introduced to allow recreational shooting in national parks, and there is pressure to log these areas too. Read the rest of this entry »


Get every new post delivered to your Inbox.

Join 6,240 other followers

%d bloggers like this: