Individuals a population to conserve make

28 11 2012
Unique in its genus, the saiga antelope inhabits the steppes and semi-desert environments in two sub-species split between Kazakhstan (Saiga tatarica tatarica, ~ 80% of the individuals) and Mongolia (Saiga tatarica mongolica). Locals hunt them for their meat and the (attributed) medicinal properties of male horns. Like many ungulates, the population is sensitive to winter severity and summer drought (which signal seasonal migrations of herds up to 1000 individuals). But illegal poaching has reduced the species from > 1 million in the 1970s to ~ 50000 currently (see RT video). The species has gone extinct in China and Ukraine, and has been IUCN “Critically Endangered” from 2002. The photo shows a male in The Centre for Wild Animals, Kalmykia, Russia (courtesy of Pavel Sorokin).

In a planet approaching 7 billion people, individual identity for most of us goes largely unnoticed by the rest. However, individuals are important because each can promote changes at different scales of social organisation, from families through to associations, suburbs and countries. This is not only true for the human species, but for any species (1).

It is less than two decades since many ecologists started pondering the ways of applying the understanding of how individuals behave to the conservation of species (2-9), which some now refer to as ‘conservation behaviour’ (10, 11). The nexus seems straightforward. The decisions a bear or a shrimp make daily to feed, mate, move or shelter (i.e., their behaviour) affect their fitness (survival + fertility). Therefore, the sum of those decisions across all individuals in a population or species matters to the core themes handled by conservation biology for ensuring long-term population viability (12), i.e., counteracting anthropogenic impacts, and (with the distinction introduced by Cawley, 13) reversing population decline and avoiding population extinction.

To use behaviour in conservation implies that we can modify the behaviour of individuals to their own benefit (and mostly, to the species’ benefit) or define behavioural metrics that can be used as indicators of population threats. A main research area dealing with behavioural modification is that of anti-predator training of captive individuals prior to re-introduction. Laden with nuances, those training programs have yielded contrasting results across species, and have only tested a few instances of ‘success’ after release into the wild (14). For example, captive black-tailed prairie dogs (Cynomys ludovicianus) exposed to stuffed hawks, caged ferrets and rattlesnakes had higher post-release survival than untrained individuals in the grasslands of the North American Great Plains (15). A clear example of a threat metric is aberrant behaviour triggered by hunting. Eleanor Milner-Gulland et al. (16) have reported a 46 % reduction in fertility rates in the saiga antelope (Saiga tatarica) in Russia from 1993-2002. This species forms harems consisting of one alpha male and 12 to 30 females. Local communities have long hunted this species, but illegal poaching for horned males from the early 1990s (17) ultimately led to harems with a female surplus (with an average sex ratio up to 100 females per male!). In them, only a few dominant females seem to reproduce because they engage in aggressive displays that dissuade other females from accessing the males. Read the rest of this entry »





Faraway fettered fish fluctuate frequently

27 06 2010

Hello! I am Little Fish

Swimming in the Sea.

I have lots of fishy friends.

Come along with me.

(apologies to Lucy Cousins and Walker Books)

I have to thank my 3-year old daughter and one of her favourite books for that intro. Now to the serious stuff.

I am very proud to announce a new Report in Ecology we’ve just had published online early about a new way of looking at the stability of coral reef fish populations. Driven by one of the hottest young up-and-coming researchers in coral reef ecology, Dr. Camille Mellin (employed through the CERF Marine Biodiversity Hub and co-supervised by me at the University of Adelaide and Julian Caley and Mark Meekan of the Australian Institute of Marine Science), this paper adds a new tool in the design of marine protected areas.

Entitled Reef size and isolation determine the temporal stability of coral reef fish populations, the paper applies a well-known, but little-used mathematical relationship between the logarithms of population abundance and its variance (spatial or temporal) – Taylor’s power law.

Taylor’s power law is pretty straightforward itself – as you raise the abundance of a population by 1 unit on the logarithmic scale, you can expect its associated variance (think variance over time in a fluctuating population to make it easier) to rise by 2 logarithmic units (thus, the slope = 2). Why does this happen? Because a log-log (power) relationship between a vector and its square (remember: variance = standard deviation2) will give a multiplier of 2 (i.e., if xy2, then log10x ~ 2log10y).

Well, thanks for the maths lesson, but what’s the application? It turns out that deviations from the mathematical expectation of a power-law slope = 2 reveal some very interesting ecological dynamics. Famously, Kilpatrick & Ives published a Letter in Nature in 2003 (Species interactions can explain Taylor’s power law for ecological time series) trying to explain why so many real populations have Taylor’s power law slopes < 2. As it turns out, the amount of competition occurring between species reduces the expected fluctuations for a given population size because of a kind of suppression by predators and competitors. Cool.

But that application was more a community-based examination and still largely theoretical. We decided to turn the power law a little on its ear and apply it to a different question – conservation biogeography. Read the rest of this entry »





The elusive Allee effect

8 01 2010

© D. Bishop, Getty Images

In keeping with the theme of extinctions from my last post, I want to highlight a paper we’ve recently had published online early in Ecology entitled Limited evidence for the demographic Allee effect from numerous species across taxa by Stephen Gregory and colleagues. This one is all about Allee effects - well, it’s all about how difficult it is to find them!

If you recall, an Allee effect is a “…positive relationship between any component of individual fitness and either numbers or density of conspecifics” (Stephens et al. 1999, Oikos 87:185-190) and the name itself is attributed to Warder Clyde Allee. There are many different kinds of Allee effects (see previous Allee effects post for Berec and colleagues’ full list of types and definitions), but the two I want to focus on here are component and demographic Allee effects.
© Elsevier
© Elsevier
component Allee effect modifies one or many surrogate measures of fitness (e.g., heterozygosity, survival rate, fertility, etc.), whereas a demographic Allee effect is a manifestation of component Allee effect(s) that lead to a reduction of the population rate of change at low population sizes (or conversely, an increase in the rate of growth as a population expands). The graph to the left shows this concept schematically.

Now, the evidence for component Allee effects abounds, but finding real instances of reduced population growth rate at low population sizes is difficult. And this is really what we should be focussing on in conservation biology – a lower-than-expected growth rate at low population sizes means that recovery efforts for rare and endangered species must be stepped up considerably because their rebound potential is lower than it should be.

We therefore queried over 1000 time series of abundance from many different species and lo and behold, the evidence for that little dip in population growth rate at low densities was indeed rare – about 1 % of all time series examined!

I suppose this isn’t that surprising, but what was interesting was that this didn’t depend on sample size (time series where Allee models had highest support were in fact shorter) or variability (they were also less variable). All this seems a little counter-intuitive, but it gels with what’s been assumed or hypothesised before. Measurement error, climate variability and the sheer paucity of low-abundance time series makes their detection difficult. Nonetheless, for those series showing demographic Allee effects, their relative model support was around 12%, suggesting that such density feedback might influence the population growth rate of just over 1 in 10 natural populations. In fact, the many problems with density feedback detections in time series that load toward negative feedback (sometimes spuriously) suggest that even our small sample of Allee time series are probably vastly underestimated. We have pretty firm evidence that inbreeding is prevalent in threatened species, and demographic Allee effects are the mechanism by which such depression can lead a population down the extinction vortex.

CJA Bradshaw

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl

ResearchBlogging.orgGregory, S., Bradshaw, C.J.A., Brook, B.W., & Courchamp, F. (2009). Limited evidence for the demographic Allee effect from numerous species across taxa Ecology DOI: 10.1890/09-1128








Follow

Get every new post delivered to your Inbox.

Join 5,306 other followers

%d bloggers like this: