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Abstract. Recent advances in telemetry technology have created a wealth of tracking data
available for many animal species moving over spatial scales from tens of meters to tens of
thousands of kilometers. Increasingly, such data sets are being used for quantitative movement
analyses aimed at extracting fundamental biological signals such as optimal searching behavior
and scale-dependent foraging decisions. We show here that the location error inherent in
various tracking technologies reduces the ability to detect patterns of behavior within
movements. Our analyses endeavored to set out a series of initial ground rules for ecologists to
help ensure that sampling noise is not misinterpreted as a real biological signal. We simulated
animal movement tracks using specialized random walks known as Lévy flights at three spatial
scales of investigation: 100-km, 10-km, and 1-km maximum daily step lengths. The locations
generated in the simulations were then blurred using known error distributions associated with
commonly applied tracking methods: the Global Positioning System (GPS), Argos polar-
orbiting satellites, and light-level geolocation. Deviations from the idealized Lévy flight pattern
were assessed for each track after incrementing levels of location error were applied at each
spatial scale, with additional assessments of the effect of error on scale-dependent movement
patterns measured using fractal mean dimension and first-passage time (FPT) analyses. The
accuracy of parameter estimation (Lévy l, fractal mean D, and variance in FPT) declined
precipitously at threshold errors relative to each spatial scale. At 100-km maximum daily step
lengths, error standard deviations of�10 km seriously eroded the biological patterns evident in
the simulated tracks, with analogous thresholds at the 10-km and 1-km scales (error SD � 1.3
km and 0.07 km, respectively). Temporal subsampling of the simulated tracks maintained some
elements of the biological signals depending on error level and spatial scale. Failure to account
for large errors relative to the scale of movement can produce substantial biases in the
interpretation of movement patterns. This study provides researchers with a framework for
understanding the limitations of their data and identifies how temporal subsampling can help to
reduce the influence of spatial error on their conclusions.
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INTRODUCTION

A major aim in wildlife ecology is the identification

and understanding of processes that shape animal

movement because these patterns dictate a host of

ecological attributes such as population distribution and

abundance, metapopulation dynamics, disease preva-

lence and transmission, and community structure (With

and Crist 1995, Keeling and Grenfell 1997, Hanski 1998,

Turchin 1998, Morales and Ellner 2002, Johnson et al.

2006). From a conservation perspective, understanding

movement patterns is particularly important for quan-

tifying a population’s predicted response to the alter-

ation of habitat structure (Adler and Nuernberger 1994,

Schooley and Wiens 2004), given that one of the first

consequences of habitat fragmentation is the disruption

of the functional connectivity of population patches

(Hansson 1991, With et al. 1999). It can be argued then

that mobility, and the phenomena driving variation in

this parameter, are key determinants of an individual’s

survival prospects and reproductive success (Cain 1985).

Keeping step with the increasing importance of

quantifying mobility is the proliferation of technologies

available for studying animal movement at a variety of

spatial and allometric scales. Indeed, available tech-

niques range from the simple, yet remarkably informa-

tive, application of unraveling thread for tracking the

fine-scale movements of tortoises (Claussen et al. 1997;

see Plate 1), to more complex methods that include the

collection of temporal patterns in light intensity that

provide coarse estimates of global position (Wilson et al.

1992, Hill 1994, Teo et al. 2004, Shaffer et al. 2005),
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very-high-frequency (VHF) radio tracking (Tew and

Macdonald 1994, Dahle and Swenson 2003), advanced

animal-borne sensors estimating tracks based on Dopp-

ler shift in frequency detected by satellite arrays

(Keating et al. 1991, Priede and French 1991), harmonic

radar transponders (Capaldi et al. 2000), dead-reckon-

ing compass systems (Wilson et al. 1991), and the Global

Positioning System, GPS (D’Eon and Delparte 2005).

These techniques have been extremely effective in

describing the often amazing feats of animal movement

on land or in the seas (e.g., Craighead and Craighead

1987, Mate et al. 1997, Block et al. 2001, Weimerskirch

et al. 2002, Sims et al. 2003, Wiig et al. 2003, Hays et al.

2004, Pennisi 2005), and tracking data sets are now

being used increasingly in various quantitative move-

ment analyses (e.g., Capaldi et al. 2000, Fritz et al. 2003,

Pinaud and Weimerskirch 2005). Such analyses are

essential to change the study of animal movement from

primarily a descriptive exercise to one that can quantify

the behavioral and ecological complexities of foraging

and movement strategies at a variety of spatial scales.

Many have realized the importance of location error

when interpreting animal tracks. For example, Hays et

al. (2001) examined the effects of variable precision in

Argos-based locations for migrating green turtles

(Chelonia mydas Linnaeus) and showed that accurate

travel speeds could be obtained if pairs of locations used

to estimate speed were sufficiently far apart. More

recently, Jerde and Visscher (2005) used Monte Carlo

simulations to examine the influence of measurement

error relative to distance between successive locations

(step length) derived from GPS collars, and demon-

strated that estimates of turn angle and step length were

accurate only when step lengths were large relative to

measurement error. Likewise, Jonsen et al. (2005) used a

Bayesian state�space model that incorporated known

information on location error to improve the behavioral

interpretation of foraging seal tracking data derived

from Argos satellites. Tremblay et al. (2006) examined

the effects of various interpolation algorithms on the

location data from various marine species to determine

the overall accuracy of interpolated locations relative to

the precision of the tracking technology employed.

Our aim in this paper is to build on previous studies

investigating the effects of measurement error on the

biological signals derived from animal movement data.

We achieve this by simulating a large number of

idealized tracks at three spatial scales: 1-, 10- and 100-

km maximum step lengths, and then blur the resulting

locations with incrementing errors normally associated

with GPS, Argos, and light-level geolocation technolo-

gies. The idealized tracks and their error-blurred

versions are assessed quantitatively using three mathe-

matical procedures that highlight different biological

signals integrated by tracking data. Here, we apply

incrementing measurement error to the simulated tracks

and measure (1) the deviance from idealized Lévy

random walks (Viswanathan et al. 2000), (2) the change

in mean fractal dimension (Milne 1991), and (3) the

change in search effort using first-passage time (FPT)

analysis (Johnson et al. 1992) at each spatial scale under

consideration. The outcomes of this study provide

PLATE 1. (Left) An American mink (Mustela vison) in the United Kingdom carrying a very-high-frequency (VHF) radio collar
and (right) a loggerhead turtle (Caretta caretta) in Greece carrying a state-of-the-art Global Positioning System (GPS) logger. Such
devices form part of a broad range of tracking technologies available to ecologists. Photo credits: A. L. Harrington (mink) and
G. Schofield (turtle).
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ecologists with a basic set of initial ground rules to apply

to a range of movement analyses, regardless of the

spatial scale or the specific tracking technology involved.

In short, we show how noise introduced by location

inaccuracies can be overcome to extract meaningful

biological movement signals.

METHODS

Lévy flight patterns

Under the predictions of optimal foraging theory, an

organism is expected to maximize the probability of

detecting food patches by altering its movement path

relative to the temporal and spatial configuration of the

prey field (Stephens and Krebs 1986). When universal

knowledge of the foraging environment is degraded by

stochastic influences and complex prey behavior, a

foraging organism is theorized to employ a suite of

movement conventions that optimize encounter proba-

bility (Houston and McNamara 1999). Many different

models have been proposed to examine these movement

patterns, with recent attention focused on a category of

random walks known as Lévy flights (Viswanathan et al.

2000, Bartumeus et al. 2005). These specialized random

walks consist of clusters of relatively short step lengths

(distance between successive locations over a defined

period of time) connected by longer movements, with

this pattern repeated at all scales, and the step lengths

drawn from a probability distribution with a power-law

tail (Bartumeus et al. 2005). A foraging organism

employing a Lévy flight movement pattern maximizes

its probability of detecting a food patch within complex

landscapes where prey are sparsely or randomly distrib-

uted outside of the forager’s sensory detection range

(Viswanathan et al. 1999, 2000, Bartumeus et al. 2005).

Track simulation

We considered three spatial scales of movement where

we set the maximum daily step length in increasing

orders of magnitude: 1 km, 10 km, and 100 km. The

distribution of step lengths was set to an idealized Lévy

random walk:

PrðlÞ ¼ al�l

where Pr(l) is the probability density of having a step

length l, a is a normalizing constant, and l is the power

exponent. For each spatial scale considered, a power-law

distribution with l ¼ 2 of daily step lengths was

generated, given that modeling studies have determined

that this exponent produces optimal Lévy flight search

patterns (Viswanathan et al. 1999, 2000, da Luz et al.

2001). We simulated 1000 specialized random walks,

each of 365 days, by drawing steps from this step length

distribution and applying a random turn angle between

0 and 359 degrees. For each track, a histogram of step

lengths was produced to determine l (estimated from

the slope of the relationship between the log10 of bin

frequency and log10 of the step length bin). However, the

estimation of l is highly sensitive to the histogram

binning procedure, so a transformation was applied to

produce non-equidistant bins (Sims et al., 2007). First,

the bin widths were set to increase exponentially relative

to the number of bins (k) such that vector of bin widths

¼ 2k (Viswanathan et al. 1996). Next, bin frequencies

were divided by their bin width to normalize the

probability density (Newman 2005, Pueyo 2006), and

the log10 of this vector was plotted against the log10 of

the bin widths to estimate l. This procedure accounted

correctly for increasing bin widths, avoided the weight-

ing of excessive zero frequencies at high step lengths,

and provided equidistant data points in the linear

regression. An example of a simulated track, step length

histogram, and the associated estimate of l are shown in

Fig. 1. More detailed descriptions of the track simula-

tion and associated computer code are provided in the

Appendix and Supplement.

Fractal dimension

The use of fractal geometry in ecology can provide

useful insights into the landscape perception of foraging

FIG. 1. (A) An example track simulated over 365 days using an idealized Lévy flight pattern with l¼ 2 (the power exponent)
and maximum daily step length of 100 km. (B) The density (proportional frequency) histogram of step lengths with non-equidistant
bins. (C) The relationship between log-transformed frequency (bin-width corrected) and log-transformed step length to estimate l
as the absolute value of the slope; in this particular example, l was estimated at 2.03.
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animals (Crist et al. 1992, With 1994, Fritz et al. 2003)

because it provides a single (quantified) value measuring

the spatial (and temporal) complexity and heterogeneity
of the resource field (Leduc et al. 1994). The fractal

dimension (D) measures the tortuosity (crookedness) of

movement paths (Milne 1991) such that D¼ 1 indicates

a straight path and D¼ 2 indicates maximum tortuosity
covering an entire plane (Milne 1997). Fractal D varies

with the view of the path at different spatial scales, so it

also provides information on changes in behavior at

different spatial scales (Nams 1996, Nams and Bour-
geois 2004). Given that we constructed our simulated

paths to emulate a scale-invariant property (Lévy flight),

our approach assumes that the simulated organisms

view the habitat similarly over the entire range of spatial
scales. As such, we hypothesized that the overall mean

fractal D of our simulated tracks would become less

tortuous with greater degrees of spatial error.

To measure fractal D for our simulated paths, we
employed the mean fractal method of Nams (1996) that

minimizes edge effects complicating the traditional

divider method. This method measures the length of

the path by randomly starting from any point and
working the ‘‘divider’’ in both directions to estimate the

fractal mean D (Nams 1996). Fractal mean D was

calculated for each simulated track and a confidence

interval was derived over all paths at each spatial scale.

First-passage time analysis

One informative method for measuring search effort

along an animal’s foraging pathway is to examine the
allocation of time spent along the path. Paths that are

more tortuous tend to increase the time along the path at

various scales of assessment (Fauchald and Tveraa

2003). This reasoning gave rise to the method of first-
passage time (FPT) analysis (Johnson et al. 1992), with

FPT defined as the time required for an animal to cross a

circle with a given radius (Johnson et al. 1992). When

FPT analysis is applied to a random-walk path, the
mean FPT increases exponentially with the radius of the

circle, and the exponent is determined by the fractal

dimension of the path itself (Johnson et al. 1992,
Fauchald and Tveraa 2003).

For each simulated random walk, we interpolated

equidistant points along the path (this step is necessary to

calculate the relative variance in FPT by creating a series

of intermittent steps within the range of the smallest radii
considered) and then assessed the time required to cross a

circle with radii (r), incrementing the radius to two times

the maximum step length. The estimated relative

variance, Ŝr, in FPT was calculated as a function of r:

Ŝr ¼ VarlogðtrÞ

where tr is the FPT for a circle of radius r. We considered
r values ranging from 0.04 km to 2 3 maximum step

length (lmax) at increments of 0.10 3 lmax. The log

transformation makes Ŝr independent of the magnitude

of the mean FPT (Fauchald and Tveraa 2003). Express-

ing Ŝr as a function of r therefore provides a means of

identifying the spatial scales associated with an area-

restricted search (ARS), which is defined as increases in

turning rate and decreases in movement rate where

resources are plentiful (Fauchald and Tveraa 2003,

Pinaud and Weimerskirch 2005). All analyses were done

using the R software package (R Development Core

Team 2004), with specific code for the FPT analysis

provided by D. Pinaud (Pinaud andWeimerskirch 2005).

Location errors

The numerous technologies available for remotely

estimating the movement paths of free-ranging animals

while foraging all have particular error magnitudes that

have been estimated. We chose to examine three of the

most commonly applied technologies to tracking ani-

mals and their associated errors at the different spatial

scales of investigation.

GPS.—The Global Positioning System is a world-

wide, satellite-based, radio-navigation system developed

by the U.S. Department of Defense (DOD) (Dana

1989). A ground-based GPS receiver calculates the time

it takes for individual signals to arrive from at least three

satellites to the receiver to compute a two-dimensional,

horizontal fix (latitude and longitude), given an assumed

height. The detection of satellite signals of four satellites

can determine three-dimensional positions and time,

whereas five or more can provide position, time,

redundancy, and the certainty of the greater position

fix (Dana 1989). In May 2000, the DOD lifted the

restrictions on the freely available service and its

predictable accuracy is now estimated to be 22 m

(horizontal). However, we used a suite of GPS errors

ranging from 10 to 65 m (standard deviation in x and y

coordinates), given that precision depends on terrain

and the application of differential correction algorthims

(Table 1).

Argos.—Platform Transmitter Terminals (PTT) pro-

vide Argos Doppler-shifted estimates of location by

transmitting an ultra-high-frequency (UHF) pulse to

Argos satellites (implemented in 1979 by collaborative

French and American agencies; Argos 1989). PTTs

deployed on animals automatically send a message at a

predetermined rate to multiple low-earth-orbit satellites,

and then these signals are relayed from satellite to a

ground station that forwards the data to the Argos

processing center. According to Argos, precision varies;

thus locations are divided into quality classes. Error

estimates are described as the standard deviation of a

bivariate normal distribution, with the standard devia-

tions for different location classes (LC) being: classes A/

B, no estimate of accuracy; class 0, .1000 m; class 1,

.350 to ,1000 m; class 2, .150 to ,350 m; and class 3,

,150 m (Argos 1989). However, location quality has

been assessed independently for certain foraging taxa

(e.g., marine turtles; Hays et al. 2001), so we use the

standard deviations per location class as defined in that

study (Table 1).
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Light geolocation.—Data loggers attached to foraging
animals can be programmed to record light intensity at

set time intervals, and these values are then used to
calculate the time of sunrise and sunset for each day;
these times indicate approximate latitude and longitude

coordinates based on standard equations for solar
navigation (Nautical Almanac Office 1991, Wilson et
al. 1992). Geolocations are generally considered to be

accurate within one degree of latitude (111 km),
although they are often less accurate than this (Hill

1994). However, because latitude estimates are less
accurate than longitude estimates, researchers use tag-
recorded sea surface temperature (SST) compared with

satellite remote-sensing SST images to improve accuracy
of the latitudinal component of the light-level geo-

locations. Various studies have estimated the precision
of geolocation estimates derived from foraging animals
(Bradshaw et al. 2002, Teo et al. 2004, Shaffer et al.

2005), and we used two of these derived from fish and
bird studies with and without SST corrections (Table 1).

Of course, there are many examples of researchers
using very-high-frequency (VHF) radio telemetry (see
Plate 1) to determine the movement patterns of

terrestrial and marine animals (e.g., Tew andMacdonald
1994, Bradshaw et al. 1997, Wilson et al. 2002, Dahle

and Swenson 2003, Baubet et al. 2004), although the
technique appears to be used less frequently in recent
years with the advent of cheaper and more reliable

satellite-based methods. The approach uses regular
pulses of VHF radio signals transmitted from the animal

and received by a directional antenna that is either held
in the hand or mounted on a vehicle or aircraft.
Although practical in some circumstances, the technique

requires the receiver to be within line-of-sight and range
of the transmitter (McDonald and Amlaner 1980), and

the collection of sufficient data is often extremely labor

intensive (Kenward 2000). As such, the precision and
accuracy of the locations received is highly variable

depending on the terrain, vegetation cover, weather
conditions, behavior of the individuals tracked, and level
of researcher effort (McDonald and Amlaner 1980,

Kenward 2000). We therefore chose not to examine
explicitly the errors associated with VHF telemetry
because the error range that we examined (from GPS to

light-level geolocation) encompasses VHF telemetry-
associated precision. Indeed, the latter’s precision is

known to be generally much lower than GPS technology
(Bechtel et al. 2004), often with errors that well exceed
100 m (Haller et al. 2001, Baubet et al. 2004); see Table 1.

For each spatial scale of investigation, we applied the
range of errors described (with corresponding interme-

diate values) and recalculated the step lengths between
successive blurred locations to determine their effects on
the Lévy flight parameters. Lévy flights with 1 , l � 3

are super diffusive (Viswanathan et al. 1996), where
Brownian motion (normal diffusion) emerges with l . 3

and anomalous diffusion occurs with l � 1 (Bartumeus
et al. 2005). As such, we determined the proportion of
error-blurred tracks producing l within the Lévy flight

range, with the corresponding estimates of mean l at the
errors considered. Similarly, we examined the change in

the average fractal mean D and the relationship between
FPT Ŝr and spatial scale at various error levels.

Temporal subsampling

A previous study (Hays et al. 2001) found that

accurate parameters describing the movement of free-
ranging animals can be estimated even in the presence of
spatial error when the temporal or spatial scale of

investigation is adjusted accordingly. Accurate estimates
of travel speed in migrating green turtles could be

obtained with Argos locations of classes A, B, and 1�3

TABLE 1. Common methods of tracking marine and terrestrial species with associated x- and y-coordinate error standard
deviations calculated for example species.

Species Method SDx (km) SDy (km) Source

Moose (Alces alces Linnaeus) GPS-differential 0.01–0.02 0.01–0.02 Rempel and Rodgers (1997),
D’Eon and Delparte (2005)

Moose GPS-3 dimensional,
non-differential

0.0455 0.0455 Rempel et al. (1995)

Moose GPS-2 dimensional,
non-differential

0.0655 0.0655 Rempel et al. (1995)

Roving module (simulated animal) GPS (various configurations) 0.007–0.090 0.007–0.090 Hulbert and French (2001)
Various mountain-dwelling ungulates VHF telemetry 0.34 0.34 Haller et al. (2001)
Green turtle (Chelonia mydas) Argos Class 3 0.12 0.32 Hays et al. (2001)
Green turtle Argos Class 2 0.28 0.62 Hays et al. (2001)
Green turtle Argos Class 1 1.03 1.62 Hays et al. (2001)
Green turtle Argos Class 0 4.29 15.02 Hays et al. (2001)
Atlantic bluefin tuna
(Thunnus thynnus Linnaeus)

Archival light geolocation
with latitude
SST derivation

60.0 60.0 Teo et al. (2004)

Laysan Albatross,
Blackfooted Albatross
(Phoebastria immutabilis Rothschild,
P. nigripes Audubon)

Archival light geolocation
with SST latitude
correction

186.5 216. 5 Shaffer et al. (2005)

Note: Methods are Global Positioning System (GPS), Very High Frequency (VHF) telemetry, Argos satellite network Doppler-
shift, and light-level geolocation with and without sea surface temperature (SST) correction.
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when consecutive pairs of locations were at least 90 km

apart (Hays et al. 2001). Therefore, to investigate

whether reducing the resolution of the simulated tracks

would result in the maintenance of the biological signals

inherent in error-blurred foraging patterns, we system-

atically subsampled the 100-km scale simulated tracks at

increasing intervals (e.g., every two, three, four, and so

on, days) and recalculated the Lévy flight statistics (l
and proportion of simulations where 1 , l � 3) at three

levels of location error: Argos LC 0, geolocation (fish),

and geolocation (birds). Of course, we could have

chosen another spatial scale (e.g., 1-km maximum daily

step lengths) and subsampled the locations derived from

GPS; however, this provides the same results, albeit at a
different spatial scale.

RESULTS

As hypothesized, increasing the degree of spatial error
degraded the various biological signals as determined

from the changes in the Lévy exponent l, fractal mean
D, and the variance in first-passage time at each spatial
scale investigated. Interestingly, the accuracy of param-

eter estimation was reduced precipitously at various
threshold standard deviations of location error. For the
100-km scale of investigation, the proportion of

simulations falling within the Lévy flight interval of 1
, l � 3 declined markedly at spatial errors of Argos LC

0 (error SD ffi 10 km) (Fig. 2). Likewise, the Lévy
proportion dropped precipitously when errors exceeded
Argos LC 1 (SD ffi 1.3 km) and non-differential, two-

dimensional GPS error (SD ffi 0.07 km) at the 10-km
and 1-km spatial scales of investigation, respectively
(Fig. 2). These patterns were mimicked in the mean

estimates of l at the 100-km scale, with large increases

FIG. 2. The proportion of simulations resulting in Lévy l
estimates falling within the idealized range of 1–3 for increasing
errors (log of the mean standard deviation error for x and y
coordinates measured in km; top panel) at three spatial scales of
investigation (100, 10, and 1 km). Also shown is the mean
estimate of l for incrementing location errors at each spatial
scale (bottom panel). Location error classes are indicated by
dashed vertical lines: G1¼ 0.010 km GPS; G2¼ 0.020 km GPS;
G3 ¼ 0.0455 km non-differential 3-D GPS; G4 ¼ 0.0655 km
non-differential 2-D GPS; A3¼Argos LC 3; A2¼Argos LC 2;
A1¼Argos LC 1; A0¼Argos LC 0; GLF¼ 60 km geolocation
(fish); GLB ffi 200 km geolocation (bird). Refer to Table 1 for a
detailed description of location error classes.

FIG. 3. Average fractal mean dimension D (Nams 1996) as
a function of increasing location error (log of the mean
standard deviation error for x and y coordinates measured in
km) at three spatial scales of investigation (100, 10, and 1 km).
Maximum path tortuosity (crookedness) gives a fractal mean
D ¼ 2, and D ¼ 1 indicates a straight path (Milne 1991).
Location error classes are indicated by dashed vertical lines: G1
¼ 0.010 km GPS; G2 ¼ 0.020 km GPS; G3 ¼ 0.0455 km non-
differential 3-D GPS; G4 ¼ 0.0655 km non-differential 2-D
GPS; A3¼ Argos LC 3; A2 ¼ Argos LC 2; A1 ¼ Argos LC 1;
A0¼Argos LC 0; GLF¼ 60 km geolocation (fish); GLB ffi 200
km geolocation (bird). Refer to Table 1 for a detailed
description of location error classes. The ‘‘true’’ fractal mean
D 95% confidence intervals derived from the trajectories
simulated without location error were 1.8044–1.8590, 1.5891–
1.6051, and 1.3470–1.3549 for the 1-, 10-, and 100-km scales,
respectively.
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above the theoretically optimal value of l ¼ 2 at errors

of Argos LC 0. However, mean l increased noticeably at

smaller errors than that indicated by the proportion

within the Lévy range for the 10- and 1-km scales (Argos

LC 2 and non-differential 3-D GPS, respectively; Fig. 2).

The average value of mean fractal D was also highly

sensitive to location error, with deviations from the

idealized non-error-blurred values declining precipitous-

ly as in the Lévy flight analysis. As such, the errors

associated with Argos LC 0, Argos LC 1, and non-

differential 2-D GPS induced large declines in mean

fractal D at the 100-, 10-, and 1-km spatial scales,

respectively (Fig. 3). Our investigation of the effects of

these errors on the relationship between the log of

variance in FPT vs. spatial scale indicated that, at each

spatial scale, the errors at which we observed marked

degradation in the biological signals quantified by the

Lévy and mean fractal D analysis (Argos LC 0, Argos

LC 1, and non-differential 2-D GPS for 100-, 10-, and 1-

km scales, respectively) suppressed the overall variance

in FPT (Fig. 4).

The temporal subsampling of the simulated tracks at

the 100-km step length scale and various levels of location

error demonstrated that this procedure can maintain the

biological signals inherent in the data when subsampling

is of a sufficiently high frequency. For example, when

location errors are on the order of 10 km (Argos LC 0),

step lengths that are recalculated over periods of three

days (c.f. daily step lengths) result in the correction of l

estimates toward the idealized value of 2 (Fig. 5). At

greater levels of location error, subsampling at 10- and

14-day intervals improves, but does not completely

correct, the estimation of Lévy l at errors associated

with geolocation of fish and birds, respectively (Fig. 5).

DISCUSSION

With the increasing application of quantitative

techniques used to extract the spatial and temporal

signals of optimal foraging behavior integrated by

movement data, an assessment of the influence of

location error on these conclusions is a fundamental

first step in any movement analysis. As such, we provide

an important evaluation of the effects of spatial error on

the interpretation of search patterns based on Lévy

flight, fractal dimension, and first-passage time analyses

at various spatial scales. Our use of Lévy random walks

to generate the simulated tracks on which the analysis

was based should not be viewed as a prerequisite for the

evaluation of location error in this context. Our

approach of error-blurring simulated Lévy tracks was

an efficient method of ascertaining error effects on

behavior patterns with explicit macroscopic properties,

rather than an evaluation of Lévy flight per se, although

there is increasing evidence of Lévy behavior from a

broad range of taxa (e.g., Viswanathan et al. 1996, 1999,

Atkinson et al. 2002, Mårell et al. 2002, Ramos-

Fernández et al. 2004).

FIG. 4. The relationship between estimated relative variance, Ŝr, in first-passage time (FPT) spatial scale, where r is the radius of
the search FPT circles (mean [solid lines] and 95% confidence limits [dashed lines]; Fauchald and Tveraa 2003) for (A) no error at
the 100-km maximum step length scale, (B) Argos LC 0 error at 100-km, (C) no error at 10-km, (D) Argos LC 1 error at 10-km, (E)
no error at 1-km, and (F) non-differential 2-D GPS error at 1-km maximum step length.
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Our results showed clear thresholds where the metrics

relating to optimal search patterns were degraded at

different spatial scales of investigation. At macroscales

(100-km maximum daily step length), errors typically

associated with Argos LC 0 (;10 km; Hays et al. 2001,

Vincent et al. 2002) and above, resulted in a skewing of

Lévy l, average fractal mean D, and the relationship

between the variance in first-passage time (FPT) and

spatial scale (Figs. 2 and 3). At mesoscales (10-km

maximum daily step length), errors greater than or equal

to those of Argos LC 1 (;1 km; Hays et al. 2001) were

sufficient to degrade the signals measured. Finally, at

microscales (1-km maximum daily step lengths), errors

of ;60 m (equivalent to non-differential GPS errors)

had the same effect. For the Lévy l metric, large errors

typically resulted in large values (l . 3) that would be

erroneously interpreted as Brownian motion (Bartumeus

et al. 2005, Sims et al. 2007) instead of optimal searching

(l ffi 2). One also should be aware that small sample

sizes (i.e., short duration of tracking data collected)

might also influence the estimation of l, even though the

exponentially incrementing bin-width procedure cor-

rects, to some extent, a surplus of zero counts in the

upper step length bins.

Likewise, large location errors tended to reduce the

mean fractal dimension toward values of D ¼ 1 that

indicate less tortuosity in movement paths. This may

seem initially to be counterintuitive, given the expecta-

tion that tortuosity should increase with higher and

higher location error. Fig. 3 demonstrates that initially,

fractal D increases slightly with incrementing errors up

to a threshold error, and then declines precipitously

toward less and less tortuous movement patterns. We

can explain this trend by the loss of the predominant

small step lengths that exist when errors are small; in

other words, high errors effectively remove the number

of tight turns represented by small daily movements,

leading to much less tortuous paths and the resulting

decline in fractal D. The suppression of the variance in

FPT suggests that the identification of the spatial scales

where area-restricted searches (ARS) occur (Fauchald

and Tveraa 2003, Pinaud and Weimerskirch 2005)

would be difficult to detect with errors greater than or

equal to those threshold values identified at each spatial

scale. For example, errors that exceed the threshold

values identified in this study are likely to remove the

peaks in the relationship between the variance in FPT

and scale that have been used to identify relocating

behaviors in terrestrial species such as Cervus elaphus

(Linnaeus) moving through areas of high predator

density (Frair et al. 2005).

Previous studies have suggested that excessive error in

locations can bias conclusions regarding the foraging

dynamics of an organism. It has been shown that

Wandering Albatrosses (Diomedea exulans Linnaeus)

demonstrated less-tortuous movements than previously

thought when higher-precision GPS technology was

used in favor of Argos locations (Weimerskirch et al.

1997, Fritz et al. 2003). More recently, Weimerskirch et

al. (2005) concluded that prey encounter patterns of the

same species followed a Lévy flight, although their l
estimate of 1.26 was not close to the optimal value (;2),

leading the authors to conclude that prey encounter may

not be optimal for albatrosses. Foraging routes in that

study were determined from Argos locations and were

subsequently filtered, but the error inherent in Argos

locations may have biased the conclusions of optimality.

Likewise, Austin et al. (2004) examined movement

patterns of gray seals (Halichoerus grypus Fabricius)

and found only trivial evidence for Lévy flight search

patterns (Sims et al., in press) using Argos technology

(tracks were filtered and based on location classes 3�0).
They concluded that only 15% of the individuals tracked

FIG. 5. The proportion of 100-km maximum step length
simulations resulting in Lévy l estimates falling within the
idealized range of 1�3 for three levels of location error: A0,
Argos LC 0; GLF, 60 km geolocation (fish); and GLB ffi 200
km geolocation (bird) after subsampling the tracks at incre-
menting frequencies (top panel). Also shown is the mean
estimate of l for incrementing subsampling frequencies at the
three levels of location error considered (bottom panel). Refer
to Table 1 for a detailed description of location error classes.
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had a frequency distribution of movement lengths fitting

the negative power-law tail of a Lévy flight. It is

arguable that this low percentage was detected simply by

the influence of location error.

Temporal subsampling was a moderately effective

means to account for some of the degradation in

foraging signals associated with large location errors.

For example, at the 100-km scale the sampling of

locations at three-day intervals appeared to correct the

Lévy flight characteristics when errors of Argos LC 0 are

apparent. Interestingly though, subsampling to correct

for larger errors (i.e., those associated with light-level

geolocation) resulted in an improvement in the Lévy

patterns, thus allowing detection of Lévy flights in

animal tracks, but not in a complete correction (Fig. 5).

Indeed, an increase in the subsampling frequency yields

diminishing improvements in the proportion of simula-

tions producing idealized Lévy flight characteristics,

such that subsampling frequencies beyond five days

provide little recovery of the true value of l (Fig. 5). It

also should be noted that temporal subsampling will

explicitly change the scale of the analysis, such that

scale-variant properties may be eliminated if excessive

subsampling is required. Additionally, there is an

inherent trade-off between the improvement in the

quantification of the biological signal of interest (e.g.,

idealized Lévy flight) and the increased variance

associated with smaller sample sizes that result from

temporal subsampling. This can be observed directly in

Fig. 5, where the proportion of movement paths with A0

location errors that fall within the idealized Lévy flight

window declines after the optimal subsampling window

of three days is surpassed. These findings, coupled with

the requirement of extensive temporal data sets to offset

high subsampling frequencies, suggests that only mod-

erate improvements in the derivation of optimal

foraging metrics with quantified limits can be made

using this approach.

Importantly, we found that the high-precision loca-

tions provided by GPS technology can, in fact, result in

rather substantial deviations from optimality measures

when the spatial scale of an organism’s normal daily

movement is in the order of hundreds of meters. Many

forms of GPS technology now exist to track marine and

terrestrial species, such as the new Fastloc system

(Wildtrack Telemetry Systems, Leeds, UK). These new

systems will have their own particular error distribu-

tions, so it is important that users of these technologies

appreciate and consider the spatial scales limiting the

interpretations of fine-scale movement patterns.

CONCLUSION

The large number of tracking technologies available

for quantifying animal movement patterns provides a

wealth of choice to biologists seeking to examine the

factors driving individual and population behavior

within a changing environment. However, coupled with

this choice is the responsibility of taking account of the

precision of the chosen method relative to the spatial

scale of movement of the study organism. We have

shown, like others before us (e.g., Jerde and Visscher

2005), that failure to account for large errors relative to

the scale of movement can impart large biases in the

interpretation of optimality in foraging dynamics and

searching behavior. Additionally, we have demonstrated

that relevant biological signals can be extracted from

relatively noisy data, provided the measurement errors

are less than approximately one order of magnitude of

the maximum observed step length. As such, we hope

that our conclusions will assist researchers in the choice

of the appropriate technology for monitoring their

system of interest and will provide mechanisms for

analyzing their data to extract the most meaningful

biological signals.

ACKNOWLEDGMENTS

We thank D. Pinaud for providing the R code for the first-
passage time (FPT) analysis and two anonymous reviewers for
helpful comments to improve the manuscript. Funding was
provided by an Australian Academy of Science Visiting
Fellowship to C. J. A. Bradshaw and a Natural Environment
Research Council (NERC) Marine Biological Association
Research Fellowship to D. W. Sims. G. C. Hays, C. J. A.
Bradshaw, and D. W. Sims conceived the idea and contributed
to the manuscript; C. J. A. Bradshaw did the analysis and took
the leading in writing while a Visiting Fellow at the University
of Wales Swansea. Discussions between D. W. Sims and G. C.
Hays were facilitated by the European Tracking of Predators in
the Atlantic (EUTOPIA) program in the European Census of
Marine Life.

LITERATURE CITED

Adler, F. A., and B. Nuernberger. 1994. Persistence in patchy
irregular landscapes. Theoretical Population Biology 45:41–75.

Argos. 1989. User’s manual for the ARGOS system. Argos CLS
[Collecte Localisation Satellites], Toulouse, France.

Atkinson, R. P. D., C. J. Rhodes, D. W. Macdonald, and R. M.
Anderson. 2002. Scale-free dynamics in the movement
pattern of jackals. Oikos 98:134–140.

Austin, D., W. D. Bowen, and J. I. McMillan. 2004.
Intraspecific variation in movement patterns: modeling
individual behaviour in a large marine predator. Oikos 105:
15–30.

Bartumeus, F., M. G. E. Da Luz, G. M. Viswanathan, and J.
Catalan. 2005. Animal search strategies: a quantitative
random-walk analysis. Ecology 86:3078–3087.

Baubet, E., S. Brandt, J. Vassant, J.-P. Gendner, and F. Klein.
2004. Can wild boar be surveyed using GPS? Memoirs of the
National Institute of Polar Research 58:188–195.

Bechtel, R., A. Sánchez-Azofeifa, B. Rivard, G. Hamilton, J.
Martin, and E. Dzus. 2004. Associations between woodland
caribou telemetry data and Landsat TM spectral reflectance.
International Journal of Remote Sensing 25:4813–4828.

Block, B. A., H. Dewar, S. B. Blackwell, T. D. Williams, E. D.
Prince, C. J. Farwell, A. Boustany, S. L. H. Teo, A. Seitz, A.
Walli, and D. Fudge. 2001. Migratory movements, depth
preferences, and thermal biology of Atlantic bluefin tuna.
Science 293:1310–1314.

Bradshaw, C. J. A., S. Boutin, and D. M. Hebert. 1997. Effects
of petroleum exploration on woodland caribou in North-
eastern Alberta. Journal of Wildlife Management 61:1127–
1133.

Bradshaw, C. J. A., M. A. Hindell, K. J. Michael, and M.
Sumner. 2002. The optimal spatial scale for the analysis of
elephant seal foraging as determined by geo-location in

COREY J. A. BRADSHAW ET AL.636 Ecological Applications
Vol. 17, No. 2



relation to sea surface temperatures. ICES [International
Council for Exploration of the Sea] Journal of Marine
Science 59:770–781.

Cain, M. L. 1985. Random search by herbivorous insects: a
simulation model. Ecology 66:876–888.

Capaldi, E. A., A. D. Smith, J. L. Osborne, S. E. Fahrbach,
S. M. Farris, D. R. Reynolds, A. S. Edwards, A. Martin,
G. E. Robinson, G. M. Poppy, and J. R. Riley. 2000.
Ontogeny of orientation flight in the honeybee revealed by
harmonic radar. Nature 403:537–540.

Claussen, D. L., M. S. Finkler, and M. M. Smith. 1997. Thread
trailing of turtles: methods for evaluating spatial movements
and pathway structure. Canadian Journal of Zoology 75:
2120–2128.

Craighead, D. J., and J. J. Craighead. 1987. Tracking caribou
using satellite telemetry. National Geographic Research 3:
462–479.

Crist, T. O., D. S. Guertin, J. A. Wiens, and B. T. Milne. 1992.
Animal movement in heterogeneous landscapes: an experi-
ment with Elodes beetles in shortgrass prairie. Functional
Ecology 6:536–544.

Dahle, B., and J. E. Swenson. 2003. Seasonal range size in
relation to reproductive strategies in brown bears Ursus
arctos. Journal of Animal Ecology 72:660–667.

da Luz, M. G. E., S. V. Buldyrev, S. Havlin, E. P. Raposo,
H. E. Stanley, and G. M. Viswanathan. 2001. Improvements
in the statistical approach to random Lévy flight searches.
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Canadian Journal of Zoology 80:854–865.

Mate, B. R., S. L. Nieukirk, and S. D. Kraus. 1997. Satellite-
monitored movements of the northern right whale. Journal of
Wildlife Management 61:1393–1405.

McDonald, D. M., and C. J. Amlaner. 1980. A practical guide
to radiotracking. Pages 143–160 in C. J. Amlaner and D. M.
McDonald, editors. Biotelemetry and radio tracking. Perga-
mon Press, Oxford, UK.

Milne, B. T. 1991. Lessons from applying fractal models to
landscape patterns. Pages 199–235 inM. G. Turner and R. H.
Gardner, editors. Quantitative methods in landscape ecology.
Springer-Verlag, New York, New York, USA.

Milne, B. T. 1997. Applications of fractal geometry in wildlife
biology. Pages 32–69 in J. A. Bissonette, editor. Wildlife and
landscape ecology. Springer-Verlag, New York, New York,
USA.

Morales, J. M., and S. P. Ellner. 2002. Scaling up animal
movements in heterogeneous landscapes: the importance of
behavior. Ecology 83:2240–2247.

Nams, V. O. 1996. The VFractal: a new estimator for fractal
dimension of animal movement paths. Landscape Ecology
11:289–297.

Nams, V. O., and M. Bourgeois. 2004. Fractal analysis
measures habitat use at different spatial scales: an example
with American marten. Canadian Journal of Zoology 82:
1738–1747.

Nautical Almanac Office. 1991. Almanac for computers. U.S.
Naval Observatory, Washington, D.C., USA.

Newman, M. E. J. 2005. Power laws, Pareto distributions and
Zipf’s law. Contemporary Physics 46:323–351.

Pennisi, E. 2005. Ecology: satellite tracking catches sharks on
the move. Science 310:32–33.

Pinaud, D., and H. Weimerskirch. 2005. Scale-dependent
habitat use in a long-ranging central place predator. Journal
of Animal Ecology 74:852–863.

Priede, I. G., and J. French. 1991. Tracking of marine animals by
satellite. International Journal of Remote Sensing 12:667–680.

Pueyo, S. 2006. Diversity: between neutrality and structure.
Oikos 112:392–405.

R Development Core Team. 2004. R: a language and environ-
ment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. hhttp://www.R-project.orgi

Ramos-Fernández, G., J. L. Mateos, O. Miramontes, G.
Cocho, H. Larralde, and B. Ayala-Orozco. 2004. Lévy walk
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search patterns ofwandering albatrosses.Nature 381:413–415.

Viswanathan, G. M., S. V. Buldyrev, S. Havlin, M. G. E. Da
Luz, E. P. Raposo, and H. E. Stanley. 1999. Optimizing the
success of random searches. Nature 401:911–914.

Weimerskirch, H., F. Bonadonna, F. Bailleul, G. Mabille, G.
Dell’Omo, and H. P. Lipp. 2002. GPS tracking of foraging
albatrosses. Science 295:1259.

Weimerskirch, H., A. Gault, and Y. Cherel. 2005. Prey
distribution and patchiness: factors in foraging success and
efficiency of Wandering Albatrosses. Ecology 86:2611–2622.

Weimerskirch, H., R. Wilson, and P. Lys. 1997. Activity
pattern of foraging in the wandering albatross: a marine
predator with two modes of prey searching. Marine Ecology
Progress Series 151:245–254.

Wiig, O., E. W. Born, and L. T. Pedersen. 2003. Movements of
female polar bears (Ursus maritimus) in the East Greenland
pack ice. Polar Biology 26:509–516.

Wilson, R. P., J.-J. Ducamp, W. G. Rees, B. M. Culik, and K.
Niekamp. 1992. Estimation of location: global coverage
using light intensity. Pages 131–134 in I. G. Priede and S. M.
Swift, editors. Wildlife telemetry: remote monitoring and
tracking of animals. Ellis Horwood, Chichester, UK.

Wilson, R. P., et al. 2002. Remote-sensing systems and seabirds:
their use, abuse and potential for measuring marine
environmental variables. Marine Ecology Progress Series
228:241–261.

Wilson, R. P., M. P. T. Wilson, R. Link, H. Mempel, and N. J.
Adams. 1991. Determination of movements of African
penguins Spheniscus demersus using a compass system: dead
reckoning may be an alternative to telemetry. Journal of
Experimental Biology 157:557–564.

With, K. A. 1994. Using fractal analysis to assess how species
perceive landscape structure. Landscape Ecology 9:25–36.

With, K. A., S. J. Cadaret, and C. Davis. 1999. Movement
responses to patch structure in experimental fractal land-
scapes. Ecology 80:1340–1353.

With, K. A., and T. O. Crist. 1995. Critical thresholds in species
responses to landscape structure. Ecology 76:2446–2459.

APPENDIX

Methodological details (Ecological Archives A017-025-A1).

SUPPLEMENT

Computer code (R language) to derive a power-law tail probability density function and to simulate tracks (Ecological Archives
A017-025-S1).
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