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Abstract. Extensive theoretical work on demographic Allee effects has led to the latent
assumption that they are ubiquitous in natural populations, yet current empirical support for
this phenomenon is sparse. We extended previous single-taxon analyses to evaluate the
empirical support for demographic Allee effects in the per capita population growth rate of
1198 natural populations spanning all major taxa. For each population, we quantified the
empirical support for five population growth models: no growth (random walk); exponential
growth, with and without an Allee effect; and logistic growth, with and without an Allee effect.
We used two metrics to quantify empirical support, information-theoretic and Bayesian
strength of evidence, and observed top-rank frequency. The Ricker logistic model was both the
most supported and most frequently top-ranked model, followed by random walk. Allee
models had a combined relative support of 12.0% but were top-ranked in only 1.1% of the time
series. Accounting for local climate variation and measurement error caused the loss of top-
ranked Allee models, although the latter also increased their relative support. The 13 time
series exhibiting Allee models were shorter and less variable than other time series, although
only three were non-trending. Time series containing observations at low abundance were not
more likely and did not show higher support for Allee effect models. We conclude that there is
relatively high potential for demographic Allee effects in these 1198 time series but
comparatively few observed cases, perhaps due to the influences of climate and measurement
error.

Key words: Akaike information criterion (AIC); Bayesian information criterion (BIC); demographic
Allee effect; empirical support; evidence; exponential; population dynamics; random walk; Ricker.

INTRODUCTION

An Allee effect describes a positive relationship

between fitness and population size (or density; Cour-

champ et al. 2008). It is further classified into either a

component Allee effect, which modifies one or multiple

surrogate measures of fitness (Berec et al. 2007), or a

demographic Allee effect, which is a manifestation of a

component Allee effect whereby the growth rate

increases with population size (hereafter termed ‘‘posi-

tive density feedback’’; Stephens et al. 1999). The Allee

effect, named after zoologist W. C. Allee (Odum 1953),

was first described as an improvement in fitness with

increasing population size and discussed in terms of

cooperation (Allee et al. 1949). Thirty years later,

however, M. A. Soulé highlighted declines in animal

and plant populations (Gibbons 1992), which prompted

population biologists to view the Allee effect in terms of

a reduction in fitness with decreasing population size

and issue warnings of its threat to population persistence

(Lande 1988, Dennis 1989, Fowler and Baker 1991).

Following the focal shift from cooperation to

conservation, theoretical and empirical studies of Allee

effects proliferated (Kramer et al. 2009). Empirical

support for Allee effects has now been provided for a

wide range of species and mechanisms. For example,

Davis et al. (2004) experimentally demonstrated that

sparse invasive cordgrass (Spartina alterniflora) at the

leading edge of an estuarine invasion were pollen limited

compared to plants in established aggregations. Angulo

et al. (2007) showed how the survival of adult

Californian Channel Island foxes (Urocyon littoralis)

increased when elevated predation risk was shared

among more individuals. Almost without exception,

however, empirical studies of Allee effects have focused

on component Allee effects; studies of demographic

Allee effects remain largely in the theoretical domain

and predict their widespread existence in natural

(Liermann and Hilborn 1997) and invasive (Taylor

and Hastings 2005) populations. Given the abundant

empirical support for component Allee effects (Kramer

et al. 2009) and their predicted dynamical consequences

(Berryman 2003), the latent assumption held by many
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population biologists is that demographic Allee effects

must be widespread (Courchamp et al. 2008).

Notwithstanding some noteworthy examples, there

are few studies demonstrating empirical evidence of

demographic Allee effects. Johnson et al. (2006) used a

rigorous empirical approach to reveal the existence of a

demographic Allee effect at the leading edge of the

Eurasian Gypsy moth (Lymantria dispar) invasion in the

northeastern United States. Davis et al. (2004) showed

that the pollen-limited cordgrass also suffered a

demographic Allee effect. Interestingly, both examples

may be driven by a mate-finding component Allee effect

(Tcheslavskaia et al. 2002, Davis et al. 2004; see

Gascoigne et al. 2009 for a review). Angulo et al.

(2007) revealed a demographic Allee effect in island fox

populations, together with component Allee effects in

their adult survival and reproduction. In this case, the

demographic Allee effect was weak because it did not

cause the population growth rate to become negative

(the condition that defines a strong demographic Allee

effect; Wang and Kot 2001). Rather, it appeared that the

release from competition in small fox populations

favored larger litters and higher juvenile survival, which

compensated for reduced adult survival and reproduc-

tion (Angulo et al. 2007).

As illustrated by Angulo et al. (2007), a demographic

Allee effect is an unstable population state emerging

from the interplay between density-dependent fitness-

regulating mechanisms. Central to its theory is the

assumption that a strong demographic Allee effect acts

around an unstable threshold population size known as

the ‘‘Allee threshold.’’ Above the Allee threshold, the net

effect of the underlying mechanisms is increased fitness

and the population grows, but below this threshold the

net effect is decreased fitness, causing the population to

decline (Courchamp et al. 1999). Such instability in

populations within the range of population sizes affected

by demographic Allee effects will, paradoxically, render

them difficult to detect (Stephens et al. 1999). Further, if

demographic Allee effects modify dynamics of small

populations as predicted (Courchamp et al. 1999), then

detecting demographic Allee effects might be compli-

cated by increased temporal variance in abundance at

small population sizes. For example, Lande et al. (2003)

showed how demographic stochasticity in small popu-

lations could produce population dynamics mirroring

those driven by Allee effects. Finally, environmental

stochasticity plays an important regulatory role in the

population dynamics of animals, from butterflies (No-

wicki et al. 2009) to ungulates (Forchhammer et al.

1998), and can affect population growth rate directly

(Rothery et al. 1997) or indirectly though its influence

on vegetation quality and abundance (e.g., Månsson and

Lundberg 2006). While its influence can act indepen-

dently of population size (Lande et al. 2003), extreme

climatic variability or catastrophes that have high

impact but low frequency can have a disproportional

effect on small and declining populations (Lande 1993).

Beyond its particular effects on small and declining

populations, climatic variability in population growth

rate, unless explicitly investigated, might be misinter-

preted as process variability, which in turn, can lead to

overestimation of the role of density feedback in

population regulation (Rothery et al. 1997).

Besides the aforementioned issues, there is a large

literature devoted to factors inhibiting the statistical

detection of density feedback (negative or positive) in

time series (recall that demographic Allee effects are

observable in population dynamics as positive density

feedback). The existence of deterministic trends (Tur-

chin 2003) accompanied by unbounded variance (Lande

et al. 2003), which are both more likely in shorter time

series (Solow and Steele 1990), will confound any

density feedback signal. Furthermore, Shenk et al.

(1998), and later Freckleton et al. (2006), demonstrated

how density feedback could be masked or spuriously

emerge if the populations monitored were not closed.

Importantly, Freckleton et al. (2006) also showed how

measurement error in population observations could

lead to a spurious negative correlation between popu-

lation growth rate and population size even for density-

independent time series. In addition to factors affecting

both positive and negative density feedback, sparse

observations at low population sizes might further

inhibit detection of positive density feedback (Fowler

and Baker 1991, Myers et al. 1995, Sæther et al. 1996,

Shelton and Healey 1999).

Here we examine the latent assumption of abundant

demographic Allee effects given by the widespread

empirical support for component Allee effects. We test

the hypothesis that demographic Allee effects are

abundant using multi-model, information-theoretic,

and Bayesian inferential approaches to provide mea-

sures of empirical support for five population growth

models (including Allee effect models) in population

time series of 1198 species across a wide range of taxa

(Brook and Bradshaw 2006). This approach reduces the

problem of model misspecification inherent in hypoth-

esis testing (Zeng et al. 1998). We use two measures of

empirical support: (1) relative strength of evidence

(Brook and Bradshaw 2006), which measures the

likelihood of observing each model fit in the population

growth rate given the data, and (2) top-ranked

frequency (Zeng et al. 1998), which measures the

frequency with which each model is the most parsimo-

nious descriptor of population growth rate. In addition,

we evaluate the effects of local climate variation,

measurement error, and time series attributes (length,

variation, trend, and skew) on our results. We predict

that these factors will quantitatively but not qualitative-

ly change the spread of empirical support between

population growth dynamics, but will generally diminish

detection of positive density feedback due to their

potentially disproportional effects on small population

observations. We consider a strong positive density

feedback signal as suggestive of a demographic Allee
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effect; however, we defer asserting the existence of a

demographic Allee effect until further study reveals the
existence of an underlying component Allee effect

mechanism in each case.

METHODS

Population time series

We used a database of 1198 population time series,
which differed from other databases previously exam-

ined for positive density feedback in two major aspects.
First, it comprised nearly twice as many species as other

examined databases (1198 species vs. 674 species in Sibly
et al. [2005]). Second, it incorporated representatives

from several major taxonomic groups and biomes
(compared to Myers et al. [1995], Sæther et al. [1996],

Liermann and Hilborn [1997], Barrowman et al. [2003],
and Reed [2005], who all examined single-taxon

databases). The time series were drawn primarily from
the Global Population Dynamics Database (GPDD;
NERC Centre for Population Biology 1999) but also

from the peer-reviewed literature, gray literature, and
online sources (Brook et al. 2006). Specifically, time

series were only included if they possessed: (1) a
minimum of eight year-to-year census transitions and

(2) a minimum of four different census values to ensure
sufficient variation for analysis. Where the GPDD held

more than one time series for a single species, only the
highest quality time series was selected to avoid biasing

our findings toward a few well-studied species (Brook
and Bradshaw 2006). We also collated geographical and

temporal metadata for all 1198 time series, which were
used in the climate analysis. All analyses were done

using R (R Development Core Team 2008).
Some time series contained missing values. To

maximize the number of suitable time series for analysis
(i.e., with eight year-to-year transitions), we treated

missing values as follows. Single missing values were
substituted with the mean of their two neighboring

points. This assumed that a single missing value was a
failure to census and its value was best predicted as a
linear function of local observations. The first missing

value in a string of missing values was substituted for the
lowest value in the time series. This assumed that a

string of values was a failure to record individuals at low
abundance or population extirpation, and there was a

negligible effect of the lowest value substitution. In
practice, 175 and 216 time series were treated for single

and strings of missing values, respectively. We investi-
gated the possible effect of applying these treatments by

repeating our main analysis without them. Missing
values falling outside of these categories were removed.

Modeling population growth dynamics

We modeled per capita population growth rate (r ¼
loge(Ntþ1/Nt)) using a set of five nested models,
representing a set of working hypotheses, to examine

the 1198 population time series for empirical support for
positive density feedback. The five models of population

growth rate were: a no growth model (random walk),

two density-independent growth models (with and

without an Allee effect), and two negative density

feedback growth models (with and without an Allee

effect). The decision was reached to assess support for

strong demographic Allee effects so density-independent

and negative density feedback models could be nested

within the Allee effect models. In addition, the chosen

Allee effect term enabled the Allee effect to be

characterized by a single parameter, thereby minimizing

the penalty imposed on Allee fits by the empirical model

evaluation measures. The final model set represented

population growth dynamics increasing incrementally in

complexity from a null model of no growth to a model

including both negative and positive density feedback in

r and was used by Berryman (2003) in his development

of a general theory of population growth.

Specifically, the models were: (1) the random walk

model, which assumes r¼ 0 and all variation in r is due

to random fluctuations in population size (N ) over t

time units and is modeled as r ¼ 0 þ r, where r is a

stochastic Gaussian variable with mean 0 and variance

r2 that encapsulates the process error (and measurement

error); (2) the exponential growth model, which assumes

constant r independent of population size and is

modeled as r ¼ r þ r; (3) the exponential Allee growth

model, which assumes constant r independent of

population size unless a critical lower Allee threshold

(A) exists, above which r may be depressed and below

which r becomes negative and is modeled as r¼ rm((Nt�
A)/Nt) þ r, where rm is the maximum intrinsic growth

rate; (4) the Ricker logistic negative density feedback

model, which assumes a linear decline in r with

increasing population size and is modeled as r ¼ rm(1

� (Nt/K ))þr, where K is the carrying capacity; and (5)

the Ricker Allee positive density feedback model that

describes the negative influence of N on r modified by

the relative distance from A and K. It is modeled as r¼
rm(1� (Nt/K ))((Nt� A)/Nt)þr. We collectively refer to

models with and without the Allee term as ‘‘Allee

models’’ and ‘‘non-Allee models,’’ respectively.

Least-squares model fits were estimated using a

sequential quadratic programming algorithm (donlp2;

Spellucci 1998) subject to box constraints 0 � rm, 0 � K,

and 0 � A and an additional linear constraint A , K for

the Ricker Allee model. We used the free parameter r to

calculate Akaike’s information criterion (adjusted for

small sample sizes; AICc) and Bayesian information

criterion (BIC) to measure the strength of evidence for

each candidate model (Brook and Bradshaw 2006).

Although we primarily report AICc throughout this

work, we present BIC in the empirical support summary

tables because AICc tends to favor higher dimensional

fits (in this case from the Allee effect models) with

tapering parameter coefficients (Burnham and Anderson

2002). The BIC, on the other hand, will favor lower

dimensional fits with nonzero parameter coefficients,

i.e., should provide the least support for spurious Allee
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model fits. We used discrete-time models for all species

because the majority of populations were located in the

temperate Northern Hemisphere where breeding/repro-

duction is usually discrete. We compared models using

the difference in AICc between the top-ranked and

current model (DAICc) and calculated the empirical

support for each model as its AICc weight (AICc w). We

compared specific models using the evidence ratio (ER),

calculated as the ratio of model weights (Burnham and

Anderson 2002). The top-ranked model in a model set

was selected using AICc w. Deviance explained (using

the random walk as the null model fit) was used as a

measure of a model’s structural goodness of fit.

Our model set excluded weak Allee effect models that

depress r above A without requiring 0 � A (Wang and

Kot 2001). We did not include weak Allee models

primarily because they require an additional parameter

to admit the exponential and Ricker logistic models as

special cases and we wanted to characterize the Allee

effect using a single parameter in a set of nested models.

Nevertheless, weak Allee effect models would represent

an additional step of complexity in our hypothesis set,

and their exclusion will bias our findings. To investigate

the degree of bias, we repeated our main model-fitting

exercise including a weak Ricker Allee effect model and

present summary background and results of this

modified model set in Appendix A.

Including climate variation

We investigated whether interannual climate variation

affected the support for the population growth models

by directly incorporating climate variables into model

fits as covariates (Rothery et al. 1997). Climate variables

were drawn from the Climate Research Unit’s 2.1 time

series database (CRU TS 2.1; available online),5 which

includes nine climate variables measured (or extrapolat-

ed) at a 0.58 scale for every month from 1901 to 2002

(Mitchell and Jones 2005). This database provided us

with fine-scale climate variables for most time series. We

calculated the mean annual temperature (in degrees

Celsius), mean annual precipitation (in millimeters),

annual frost-day frequency (in days), and annual wet-

day frequency (in days) for each year.

For each time series falling between 1901 and 2002, we

used census dates and geographical coordinates to

extract the corresponding climate variables and incor-

porated these into the model fits as variables represent-

ing mean climate (mc; an orthogonal regression of mean

annual temperature and mean annual precipitation) and

extreme climate (xc; an orthogonal regression of annual

frost-day frequency and annual wet-day frequency). We

used orthogonal combinations of climate variables

derived using principal components analysis to encap-

sulate the principal variation in and interactions between

the underlying variables (Hallett et al. 2004) while

minimizing the number of parameters added to each

model. We defined mean and extreme climate combina-

tions because they might influence population dynamics

differently, via, for example, differences in mortality

(e.g., Frederiksen et al. 2008), and might affect

populations differently depending on their size (Lande

1993). For this analysis, our model set included all

models both with and without all possible combinations

of climate parameters (a total of 5 3 4 ¼ 20 models).

Measurement error and data attributes

We assumed that populations were censused without

measurement error and r represented only process error

or random fluctuations in population size. In fact, it is

likely that r encapsulates both process and measure-

ment error (Brook and Bradshaw 2006). Although

without empirically estimating measurement error it is

difficult to calculate its relative contribution to r, we
attempted to understand the effect of assuming no

measurement error by repeating our analyses on time

series with randomized measurement error. For a time

series U with observations i¼ 1, 2, . . ., j, we resampled i

with replacement j times to create a bootstrap time series

U* and calculated its mean Ū*. This was repeated 1000

times to create a bootstrap distribution of 1000 Ū* from

which we calculated the bootstrap standard error of U

(SEU). This assumed that any signal in the original time

series could have been produced spuriously by measure-

ment error. We parameterized a Gaussian distribution

for each time series observation Ui with mean ¼ i and

variance ¼ SEU from which we randomly drew a

population estimate. We repeated this for all Ui to

construct a new time series of length j with randomized

measurement error. We did this for all 1198 species and

subjected the resulting time series to the analyses

described in Modeling population growth dynamics. We

repeated this entire procedure 200 times and estimated

the support for each population growth model given

randomized measurement error.

Previous studies have stressed how the probability of

detecting phenomenological density feedback depends,

to some extent, on whether the time series is trending

(Turchin 2003). To determine whether our results were

sensitive to the inclusion of trending time series, we

examined each time series for a linear trend between Nt

and t (compared to a no-trend null model using AICc;

Kölzsch et al. 2007) and investigated how support for

non-Allee and Allee models was affected. Likewise,

detection probability depends on the length of monitor-

ing period (Solow and Steele 1990) and variation in the

time series (Brook and Bradshaw 2006). We examined

the relationships between support for non-Allee and

Allee models, length of monitoring period, and variation

in time series for all 1198 time series. Finally, detection

of positive density feedback might require that a time

series include population censuses lower than some

threshold proportion of the maximum population

census. For example, Fowler and Baker (1991) only5 hhttp://www.cru.uea.ac.uki
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used time series for which the minimum N was �10% of

the maximum N, while Sæther et al. (1996) set the

threshold at 15%. We calculated the minimum N of each

of our 1198 time series as a proportion of the maximum

N and examined how the support for non-Allee and

Allee models was related to minimum N.

RESULTS

Support for population growth models

Our model-fitting procedure achieved model fits

satisfying parameter constraints for 99.4% of the 1198

time series using the Ricker logistic model, 98.2% using

the exponential Allee model, 97.9% using the Ricker

Allee model, and 100% using each of the remaining

models, confirming that the procedure was robust and

adequate to compare model fits among time series (see

examples in Fig. 1).

Overall AICc w support was highest for the Ricker

logistic (45.3%) and random walk (32.2%) models

(Table 1). Support for the Allee models was low

(exponential Allee, 2.2%; Ricker Allee, 9.8%), being

highest for birds and mammals (Table 1) and excep-

tionally high for 61 time series (open circles in Fig. 2a),

including 3.3% and 2.7% of the mammal (MAM) and

bird (BIR) time series, respectively. The Ricker logistic

and exponential growth models had higher AICc w

support than their Allee counterparts despite their

similar overall goodness of fit, as did the random walk

model despite, as the null model, explaining zero

deviance (Fig. 2b).

The spread of AICc w support was similar for each

taxonomic group (Table 1) and was reflected in the

numbers of top-ranked models (Fig. 2a). Interestingly,

Allee models were only the top-ranked models in 13

(1.1%) of the 1198 time series, and none of these was due

to the exponential Allee model. The BIC support was

generally lower than the AIC support for the Ricker

logistic model and higher for the Ricker Allee model,

particularly among those taxonomic groups with fewest

representative time series (Table 1).

Including a weak Allee effect model did not qualita-

tively change these findings (Appendix A: Table A1). In

summary, the weak Ricker Allee effect model had

similar support to the strong Ricker Allee effect model

FIG. 1. Three example data sets showing fits of the five population growth dynamic models measured in this study. (a) Data for
the small blue butterfly (Cupido minimus) for which the random walk (RW) is the best model. The exponential (EX) and
exponential Allee (EA) growth models achieve the same fit, as do the Ricker (RL) and Ricker Allee (RA) logistic growth models.
(b) Data for the muskox (Ovibos moschatus), for which EX is the top-ranked model but both Allee models acquire good support. (c)
Data for the lilac beauty moth (Apeira syringaria), for which the RA is the top-ranked model and EX and EA achieve the same fit.

July 2010 2155EMPIRICAL SUPPORT FOR ALLEE EFFECTS



and took most AICc w support from the Ricker logistic

model. On the other hand, the weak Allee model
increased the number of top-ranked Allee models from

13 to 22, despite reducing the number of top-ranked
strong Allee models to nine (Appendix A).

Finally, our missing-value treatment resulted in
qualitatively identical results, and slightly higher sup-

port for the Ricker logistic model over the exponential
and random walk models (Appendix B).

Influence of climate variation

Local climate variables were obtained for the full

temporal duration of 1015 time series, including 11 that
exhibited a top-ranked Allee model in the population

growth analysis. In most cases, the addition of local
climate variables improved model fits but when the
information-theoretic bias correction was applied for the

additional parameters, the general effect was to reduce
the model’s AICc w. Reduction in AICc w was largest for

the Ricker logistic model, and within model types was
largest for models including both mean and extreme

composite climate variables (Fig. 3).
The frequency with which the addition of climate

variables improved the non-climate model fit was higher
among those 11 time series with a top-ranked Allee
model (45.5% of cases) compared to the remaining 1004

time series (28.2% of cases). Of the former time series,
27.3% supported a random walk or non-Allee model

with climate variable(s) and only 1.2% of the latter time
series supported an Allee model with climate variable(s).

Six time series with top-ranked Allee models showed
improved support with inclusion of both mean and

extreme climate variables compared to one time series
for each climate variable separately.

Influence of measurement error and data attributes

Repeating our population growth analysis using time

series with randomized measurement error revealed a
qualitatively similar spread of AICc w support to that

obtained under the assumption of negligible measure-
ment error (Appendix C). However, randomized mea-

surement error shifted AICc w support toward the Allee

models from the random walk and non-Allee models

(Appendix C). In addition, the top-ranking model

changed more frequently among the 13 time series

originally exhibiting a top-ranked Ricker Allee model

(median ¼ 51.0% of cases, 25–75% interquartile range

based on 200 replicate treatments [IQRr] ¼ 44.5–68.5)

compared to time series originally exhibiting either a

top-ranked Ricker logistic (median ¼ 9.5% of cases,

IQRr¼1.5–35.5) or random walk model (median¼2.0%

of cases, IQRr ¼ 0.0–16.0).

Median AICc w support for non-Allee and Allee

models was higher in non-trending time series (n¼ 732;

non-Allee median ¼ 0.541, 25–75% interquartile range

based on 1000 bootstrap resamples [IQRb] ¼ 0.521–

0.549; Allee median ¼ 0.095, IQRb ¼ 0.092–0.099)

compared to trending time series (n ¼ 466; non-Allee

median ¼ 0.277, IQRb ¼ 0.272–0.301; Allee median ¼
0.058, IQRb ¼ 0.054–0.063). Only a few of the 13 time

series with top-ranked Allee models were, however, non-

trending and provided less support for positive density

feedback (n¼ 3; median¼ 0.534) than the trending time

series (n¼10; median¼0.553). The opposite pattern was

observed among the time series with top-ranked non-

Allee models (non-trending n ¼ 452, median ¼ 0.729;

trending n ¼ 184, median ¼ 0.623). No pattern in the

direction of trends was evident among the 10 trending

time series with top-ranked Allee models (six increasing

vs. four decreasing trends).

Median AICc w support for non-Allee and Allee

models increased in longer time series, but decreased in

more variable time series (measured by the coefficient of

variation), despite a weak increase in time series

variation with time series length (evidence ratio [ER] ¼
4449, R2¼ 1.6%; Fig. 4). Indeed, a model including both

time series length and variation was ranked above

competing models considering each factor separately

(although their interaction term could not be disregard-

ed; Table 2). While time series with a top-ranked non-

Allee model supported this pattern, time series with a

top-ranked Allee model were shorter and less variable

(median length ¼ 17, median CV ¼ 0.314) compared to

TABLE 1. Overall and major taxonomic group support (corrected Akaike information criterion weights, AICc w) for population
growth models and overall AICc w and Bayesian information criteron (BIC) support for non-Allee (nAE) and Allee (AE)
models as a percentage of all support.

Group n

Model AICc w AIC (%) BIC (%)

RW EX EA RL RA nAE AE nAE AE

Overall 1198 0.322 0.106 0.022 0.453 0.098 55.9 12.0 52.8 20.9
INS 603 0.304 0.089 0.018 0.488 0.101 57.8 11.9 54.9 14.3
BIR 225 0.287 0.113 0.025 0.457 0.118 57.0 14.3 52.7 12.2
MAM 152 0.337 0.119 0.027 0.413 0.104 53.3 13.1 48.7 12.3
FIS 115 0.449 0.114 0.020 0.368 0.049 48.2 6.9 50.3 14.0
RAM 37 0.363 0.146 0.026 0.386 0.078 53.2 10.5 50.1 12.6
AQI 36 0.470 0.146 0.028 0.304 0.053 45.0 8.0 43.9 13.4
PLA 30 0.431 0.120 0.017 0.396 0.036 51.6 5.4 53.4 13.9

Notes: Taxonomic abbreviations are: INS, insects; BIR, birds; MAM, mammals; FIS, fish; RAM, reptiles and amphibians; AQI,
aquatic invertebrates; PLA, plants. Model abbreviations are: RW, random walk; EX, exponential growth; EA, exponential Allee;
RL, Ricker logistic; RA, Ricker Allee logistic. Sample size (n) is the number of time series.
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the remaining time series (median length ¼ 19, median

CV ¼ 0.518).

Both non-Allee and Allee AICc w support increased

with increasing minimum N when compared to a null

mean model (non-Allee DAIC ¼ 12.56; Allee DAIC ¼
5.38; Fig. 5). Median AICc w support for time series

with a minimum N of �10% (n ¼ 533) was 0.373 for

non-Allee models (IQRb ¼ 0.359–0.383) and 0.067 for

Allee models (IQRb ¼ 0.064–0.069). Measures of

support were higher for those time series with a

minimum N of �15% (n ¼ 646; non-Allee median ¼
0.390, IQRb¼ 0.382–0.406; Allee median¼ 0.078, IQRb

¼ 0.072–0.080) and �50% (n¼ 107; non-Allee median¼
0.506, IQRb¼ 0.470–0.516; Allee median¼ 0.086, IQRb

¼ 0.081–0.092). Median minimum N was larger for the

13 time series with a top-ranked Allee model (23.5%)

than for the median of the other 1185 time series

(12.7%).

DISCUSSION

We quantified the empirical support for positive

density feedback (suggestive of a demographic Allee

effect) in the per capita population growth rate of 1198

species and evaluated the factors hypothesized to

influence its detection. Overall, we found 12.0% relative

model support for positive density feedback compared

to 55.9% relative support for the same models without

an Allee effect term. Given that our results accord with

the prevalence of negative density feedback reported in

similar meta-analyses undertaken for insects (Woiwod

and Hanski 1992) and vertebrates (Turchin and Taylor

1992), our result suggests that positive density feedback

FIG. 2. (a) Support for each population growth model as
indicated by Akaike weight, AICc w. Values below lower
whiskers represent the top-ranked frequency. The Ricker
logistic model (RL) received highest empirical support in these
data followed by random walk (RW) and exponential growth
(EX) models. Ricker Allee (RA) and exponential Allee (EA)
models received the least support. (b) Boxplot showing the
deviance explained for each population growth model, where
the random walk (RW) model is taken to be the null model
(zero deviance explained). Exponential growth (EX) generally
explained more deviance than the exponential Allee (EA)
growth model, whereas the Ricker (RL) and Ricker Allee (RA)
logistic growth models explained similar deviance. Boxes
delimit the 25–75% interquartile range (IQR), the bar represents
the median, whiskers delimit the 1.5 3 IQR range, and open
circles represent extreme values �1.5 3 IQR.

FIG. 3. Relative support for each population growth model
combined with extreme (xc), mean (mc), or both climate
variables compared to support for the population growth model
without climate variables (using evidence ratio [ER] of
loge(1/�loge)-transformed corrected Akaike information crite-
rion weights, AICc w). The general effect of including climate
variables in model fits was to decrease their AICc w, particularly
for the Ricker logistic (RL) and random walk (RW) models.
Other models were exponential growth (EX), exponential Allee
growth (EA), and Ricker Allee logistic growth (RA). Boxes
delimit the 25–75% interquartile range (IQR), the bar represents
the median, whiskers delimit the 1.5 3 IQR range, and open
circles represent extreme values �1.5 3 IQR.
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might influence the growth rate of over one in 10 natural

populations. Indeed, we detected strong positive density

feedback in populations of 13 species not previously

observed to exhibit demographic Allee effects (Appendix

D).

Those 13 populations exhibiting a top-ranked Allee

model were, however, the only populations to do so and

constituted only 1.1% of the 1198 population time series

examined. This support for positive density feedback

falls between the 2.3% of 128 fish stocks observed by

Myers et al. (1995) and the 0.2% of 3269 time series,

including insects, fish, birds, and mammals, observed by

Sibly et al. (2005). Furthermore, our database included

time series for species previously exhibiting either a

demographic Allee effect, including gypsy moth (Ly-

mantria dispar) and Atlantic cod (Gadus morhua), or a

component Allee effect, including African wild dogs

(Lycaon pictus) and coyotes (Canis latrans), but none of

our population time series for these species supported a

top-ranked Allee model.

The AIC support for positive density feedback was

highest for birds and mammals (Table 1), and a

relatively high proportion of their time series supported

top-ranked Allee models (Fig. 2). Plants, reptiles and

amphibians, and aquatic invertebrates, on the other

hand, exhibited least support for positive density

feedback. These findings are not completely consistent

with those emerging from published studies of demo-

graphic Allee effects (Kramer et al. 2009), and the

reason for this might be due to difficulties in experi-

menting on some taxa (Gascoigne et al. 2009). Based on

the BIC criterion, which supports lower dimensional

models whose parameter estimates are nonzero (Burn-

ham and Anderson 2002), plants and aquatic inverte-

brates show considerably higher support for positive

density feedback. Although BIC might support less

realistic model fits than AIC (Burnham and Anderson

2002), the high BIC support in these taxa indicates the

existence of nonnegligible Allee threshold parameter

estimates, which, when considered with experimental

evidence of component Allee effects in species of these

taxa (see Courchamp et al. 2008), means we cannot

dismiss the possibility they might exhibit demographic

Allee effects.

Our results are based on five population growth

models chosen to reflect a set of hypotheses from a null

model and incrementally increasing in complexity to a

saturated model of population growth including both

negative and positive density feedback (see Berryman

[2003] for a similar model set). However, our model set

excluded weak Allee effect models and will be biased

toward a dichotomous ‘‘strong Allee effect or no Allee

effect’’ result. To investigate this bias while retaining our

simple non-Allee/Allee model set, we repeated our

model-fitting analysis using the same model set modified

to include a weak Allee effect version of the Ricker

logistic model (Appendix A). In summary, the weak

Allee effect model usurped most AICc w support from

the Ricker logistic model, as expected, and then from the

random walk and Ricker Allee growth models. Its

inclusion, however, did not qualitatively change the

spread of support over the population growth dynamics.

This suggests our measure of support for Allee effects

was not highly sensitive to exclusion of weak Allee

effects and is likely to be an underestimate. Similarly,

although the number of time series with a top-ranking

Allee model increased from 13 (1.1%) to 22 (1.8%) (i.e.,

TABLE 2. Comparison of models examining the influence of
time-series duration (length) and variability (coefficient of
variation, CV) on the relative empirical support (corrected
Akaike information criterion weights, AICc w) for non-Allee
and Allee models.

Model AICc DAIC ER R2 (%)

Non-Allee effect
models

Length þ CV �257.6 ��� ��� 7.1
Length þ CV þ
I(length 3 CV)

�255.6 2.00 2.7 7.1

Length �206.8 50.74 1.0 3 1011 2.9
CV �211.3 46.29 1.1 3 1010 3.3

Allee effect models

Length þ CV �1662.6 ��� ��� 22.4
Length þ CV þ
I(length 3 CV)

�1660.6 2.00 2.7 22.4

Length �1603.8 58.77 5.8 3 1012 18.3
CV �1391.9 270.75 6.2 3 1058 2.1

Note: Evidence ratios (ER) .2.72 (e1) indicate increasingly
implausible models compared to the top-ranked model.

FIG. 4. Support for non-Allee (open circles) and Allee (plus
signs) models as a function of time series length while holding
for the effect of time series variation (measured as the coefficient
of variation). Partial residuals plotted on the y-axis are
calculated as residualsl ’ residualslv þ b 3 loge(length) where
b is the regression coefficient estimate relating loge(length) to
AICc w in the full model (i.e., the top-ranked models in Table 2)
and residualslv are the full model residuals.

STEPHEN D. GREGORY ET AL.2158 Ecology, Vol. 91, No. 7



a 69% increase), this increase would not change our

finding that occurrence of Allee effects is low.

Given the high relative AICc w support for positive

density feedback (a measure of its bias-corrected

likelihood), one might ask why a higher number of

these 1198 population time series did not exhibit a top-

ranked Allee model. We investigated several major

factors previously proposed to explain this discrepancy.

Local climate variation can directly influence population

growth rate and thus conclusions on the role of density

feedback in population regulation (Rothery et al. 1997).

We found inclusion of climate variables generally

improved growth model fits but the improvement was

usually offset by the AICc bias correction, so the non-

climate growth models were generally most parsimoni-

ous. This contrasts with the growing evidence that

climate, and more generally environmental stochasticity,

can play an important role in population regulation

(Turchin 2003). On the other hand, these results might

be due to factors inherent in a meta-analytic approach

such as, for example, whether the defined climate

variables are equally appropriate for all (or any) of the

species analyzed. Interestingly, almost half of the Allee

model fits were improved by inclusion of climatic

variability (compared to almost 30% of non-Allee model

fits) and almost a third of time series with top-ranked

Allee models switched to supporting a top-ranked non-

Allee or random walk model (compared to just 1.2% of

non-Allee models that switched to supporting a top-

ranked Allee model). These findings suggest that

detection of positive density feedback is sensitive to

climatic variability, which should be incorporated in

attempts to detect Allee effects. On the other hand, there

was no discernable difference between mean and

extreme climate influences, despite the higher theoretical

influence of extreme climate on population dynamics of

small populations (Lande 1993), hinting at ill-defined

mean and extreme climate variables.

Measurement error can either generate or mask

evidence for density feedback in population time series

(Shenk et al. 1998, Freckleton et al. 2006). As such, we

investigated the possible consequences of our negligible

measurement error assumption. Although relaxing the

assumption of negligible measurement error had no

qualitative effect on our results (cf. Table 1 and

Appendix C), it did cause (1) a shift in AICc w support

from the random walk and Ricker logistic models to the

Ricker Allee model and (2) 51% of the 13 time series

exhibiting top-ranked Allee models to support a top-

ranked random walk or non-Allee model. We conclude

that empirical support for positive density feedback can

arise spuriously from excessive measurement error and

that detection of positive density feedback might be

sensitive to extreme (and possibly erroneous) observa-

tions (Freckleton et al. 2006). Because positive density

feedback acts around unstable thresholds (Courchamp

et al. 1999), observations in the range of population sizes

at which it acts should be rare. By definition, such rare

observations will be extreme compared to the general

pattern in the time series (Chan et al. 2005). Therefore,

determining whether observed positive density feedback

is real will require careful monitoring and independent

assessment of the various sources of measurement error.

The presence of extreme observations in time series

exhibiting positive density feedback should be evident in

measures of time series variation. However, we found

lower variation in the 13 time series exhibiting top-

ranked Allee models compared to the remaining time

series. Although these 13 time series were shorter than

the remaining time series and time series variation

increases with time series length (Inchausti and Halley

2001), these results suggest that detection of positive

density feedback in these time series was not necessarily

due to extreme values. Rather, we found that empirical

support for Allee models generally increased with

increasing time series length and decreasing time series

variation. This indicates that detection of density

feedback (positive and negative) is more likely in non-

trending time series (Inchausti and Halley 2001);

however, only a quarter of the time series exhibiting

positive density feedback here were non-trending (with

no pattern among trend directions). This conundrum

merits closer study because of the potential practical

value in the ability to foresee a demographic Allee effect

from time series characteristics, as is under investigation

for regime shifts (e.g., Carpenter and Brock 2006).

Finally, we found limited support for the prevalent

hypothesis that sparse observations at low population

sizes might underpin the failure to observe more

empirical support for positive density feedback (Myers

et al. 1995, Sæther et al. 1996, Shelton and Healey 1999).

FIG. 5. Support for non-Allee (open circles) and Allee (plus
signs) models, as indicated by Akaike weight, AICc w, increased
with increasing minimum population census value (as a
proportion of maximum population census value).
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We found median support for both negative and positive

density feedback increased with increasing minimum

population census. Indeed, the minimum census value in

the 13 time series exhibiting top-ranked Allee models

was higher than that for the remaining time series.

Furthermore, the opposite observed relationship to that

hypothesized suggests this finding is unlikely to be

changed by the inclusion of weak Allee effects. Rather, it

seems this criterion has limited value as a requirement to

detecting an Allee effect.

We emphasize that (1) our comparative approach

ranks models in terms of their relative consistency with

patterns in the time series, and thus a top-ranked model

can still provide an inadequate structural representation

of the underlying dynamical signal (Turchin 2003), and

(2) our approach is necessarily general and makes

several assumptions to analyze population growth

dynamics of a range of species with different life

histories and populations with different extrinsic pres-

sures (e.g., Getz and Lloyd Smith 2006). Nevertheless,

our ability to detect positive density feedback in some

populations given an inherent bias to detect negative

density feedback, exaggerated by measurement error

(Freckleton et al. 2006) and model oversimplification

(Festa Bianchet et al. 2003), could be taken as relatively

strong evidence that they do indeed exhibit positive

density feedback. Whether an observation of positive

density feedback can be considered indicative of a

demographic Allee effect will still require a combination

of careful monitoring and replicated experimentation

(Turchin 2003); however, the higher likelihood of

positive density feedback compared to the number of

observed cases suggests that there might be more cases

present than observed (Stephens et al. 2007).
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APPENDIX A

Assessing the exclusion of weak Allee effect models (Ecological Archives E091-149-A1).

APPENDIX B

Missing-value treatment table: overall and major taxonomic group support (Akaike weights; AICc w) for population growth
models and overall AICc w and Bayesian information criterion support for non-Allee and Allee models as a percentage of all
support (Ecological Archives E091-149-A2).

APPENDIX C

Measurement error table: overall and major taxonomic group support for population growth models and overall AICc w and
Bayesian information criterion support for non-Allee and Allee models as a percentage of all support (Ecological Archives E091-
149-A3).

APPENDIX D

Time series with Allee effects: measures of model support (Akaike weights; AICc w) for the 13 time series with highest support for
Allee models (Ecological Archives E091-149-A4).
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