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ABSTRACT

Aim We developed predictive models of coral reef fish species richness and abun-
dance that account for both broad-scale environmental gradients and fine-scale
biotic processes, such as dispersal, and we compared the importance of absolute
geographical location (i.e. geographical coordinates) versus relative geographical
location (i.e. distance to domain boundaries).

Location Great Barrier Reef, Australia.

Methods Four annual surveys of coral reef fishes were combined with a 0.01°-
resolution grid of environmental variables including depth, sea surface tempera-
ture, salinity and nutrient concentrations. A principal component-based method
was developed to select candidate predictors from a large number of correlated
variables. Generalized linear mixed-effects models (GLMMs) were used to gauge
the respective importance of the different spatial and environmental predictors.
An error covariance matrix was included in the models to account for spatial
autocorrelation.

Results (1) Relative geographical descriptors, represented by distances to the coast
and to the barrier reef, provided the highest-ranked single model of species richness
and explained up to 36.8% of its deviance. (2) Accounting for spatial autocorrela-
tion doubled the deviance in abundance explained to 71.9%. Sea surface tempera-
ture, salinity and nitrate concentrations were also important predictors of
abundance. Spatially explicit predictions of species richness and abundance were
robust to variation in the spatial scale considered during model calibration.

Main conclusions This study demonstrates that distance-to-domain boundaries
(i.e. relative geographical location) can offer an ecologically relevant alternative to
geographical coordinates (i.e. absolute geographical location) when predicting
biodiversity patterns, providing a proxy for multivariate and complex environmen-
tal processes that are often difficult or expensive to estimate.
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INTRODUCTION

The development and application of species distribution

models, including models of species richness and abundance,

has proliferated in the last few decades (Guisan & Thuiller,

2005). Originally used to test ecological theory and detect

species–environment relationships, such models are now used

regularly in conservation planning (Guisan & Zimmermann,

2000; Austin, 2002). They have been used to assess spatial pat-

terns in biodiversity (e.g. Ferrier, 2002), disentangle natural and

anthropogenic influences on the structure of biological commu-

nities (e.g. Mellin et al., 2008) and forecast community

responses to environmental change (Guisan & Thuiller, 2005).

Although widely applied in terrestrial ecology, species distribu-

tion models are still in their infancy in marine ecosystems, par-

ticularly in coral reef ecosystems at spatial scales relevant to
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environmental monitoring and management (Beger & Possing-

ham, 2008; Mellin et al., 2009). The development of such models

in coral reefs could, however, provide a new insight into species

distribution modelling and offers a novel opportunity to inves-

tigate the relationships between biological and environmental

variables, and their spatial structure, in a system made of highly

fragmented habitat patches subjected to broad-scale environ-

mental gradients.

Physical variables that might be useful in predicting spatial

patterns of species distributions can be categorized broadly as

environmental or spatial. The influence of environmental vari-

ables partly relies on the species–energy relationship, a climati-

cally based hypothesis that postulates that energy availability

generates and maintains gradients of species richness in both

terrestrial (see review by Hawkins et al., 2003) and marine eco-

systems (e.g. Roy et al., 1998; Allen et al., 2002). On coral reefs,

thermodynamic and mechanical forces with the potential to

shape fish assemblages include water temperature (Mora &

Robertson, 2005; Sandin et al., 2008), salinity (Fraser &

Currie, 1996), nutrients and phytoplankton production (Mora

& Robertson, 2005; Sandin et al., 2008), wave exposure

(Depczynski & Bellwood, 2005; Fulton & Bellwood, 2005) and

ocean currents (M. J. Emslie et al. unpublished; Cowen et al.,

2006). Such environmental gradients can also indirectly influ-

ence fish assemblages by shaping benthic communities and

reef geomorphology and thus the structure of fish habitats

(e.g. Madin & Connolly, 2006; Finkl & Andrews, 2008). To

date, however, most studies have only considered these envi-

ronmental variables in isolation, so any hierarchy of their

respective effects on the species richness and abundance of

coral reef fishes remains unclear. In addition, analysis at

restricted spatio-temporal scales (e.g. 10 km and 2 months;

Depczynski & Bellwood, 2005) precludes the development of

general rules about the influence of environmental factors on

the structure and composition of reef fish communities and

the distributions of their constituent species at broader scales

likely to be important to the functioning of these ecosystems.

Spatial context can also influence the structure of biological

communities, with the mechanisms involved depending on the

spatial scale considered. Legendre & Legendre (1998) defined

the trend in biological variables, or ‘true’ gradient, as a broad-

scale spatial pattern arising from the influence of spatially

structured environmental characteristics varying as a function

of geographical location. By contrast, fine-scale spatial auto-

correlation can generate a ‘false’ gradient in response to con-

tagious biotic processes such as dispersal, thereby becoming a

function of the distance between sites. Coral reef fish commu-

nities are likely to provide a unique system for investigating the

respective role of each spatial scale. At a scale of > 10 km, coral

reef fish distributions can reflect strong latitudinal (e.g. Mora

et al., 2003) or cross-shelf (e.g. Williams & Hatcher, 1983)

differences.

The origin of these gradients remains controversial and

several non-environmental drivers have been invoked, such as

the mid-domain effect (Connolly et al., 2003; Bellwood et al.,

2005). Under the mid-domain model, random placement of

species ranges is expected to result in the greatest species rich-

ness occurring in the middle of the spatial domain considered.

Spatial gradients in the structure of tropical reef fish assem-

blages can also correlate closely with environmental gradients

such as latitudinal variation in temperature (Roy et al., 1998) or

cross-shelf gradients in salinity and chlorophyll (Liston et al.,

1992; Burrage et al., 2002). Therefore, both theory and empirical

observations suggest that latitudinal and/or cross-shelf position

might provide a cost-effective surrogate for the combined effects

of different environmental variables when predicting the assem-

blage structure of coral reef fishes at broader spatial scales.

In species distribution modelling to date, broad-scale spatial

patterns have always been accounted for by incorporating lon-

gitude and latitude as predictors (sometimes transformed into

a trend surface), thereby providing an index of the absolute

geographical location (e.g. Lichstein et al., 2002; Greve et al.,

2008). In contrast, the distance-to-domain boundaries, repre-

senting a relative measure of geographical location along envi-

ronmental gradients, might instead provide a better predictor

of biodiversity patterns, independent of any mid-domain

effect. The utility of such an approach, however, has not yet

been investigated.

In some terrestrial ecosystems, strong spatial autocorrelation

in species richness and abundance resulting from population

connectivity occurs at scales < 10 km, which overlays the

effects of both environmental and spatial variables (e.g. Selmi

& Boulinier, 2001; Lichstein et al., 2002). Despite potentially

major effects on observed and predicted patterns of coral reef

fish biodiversity, spatial autocorrelation has, to our knowledge,

never before been considered explicitly in predictive models of

assemblage patterns of reef fishes at a scale relevant to conser-

vation and management decisions. By not incorporating

spatial autocorrelation, existing models might overestimate

environmental effects on species abundance (Lichstein et al.,

2002; Wintle & Bardos, 2006) due to a lack of independent

errors, leading to inflated degrees of freedom and thus poten-

tially biased estimates of Type I error (Legendre, 1993;

Legendre & Legendre, 1998). It also seems important, regard-

less of the ecosystem under study, to combine fine-scale spatial

autocorrelation with large-scale spatial structure informed

through distance-to-domain boundaries as an alternative to

geographical coordinates.

Here we use a regional-scale, 4-year dataset of abundances

of coral reef fishes on the Great Barrier Reef (Australia) com-

bined with a 0.01°-resolution grid of environmental and

spatial variables to: (1) identify the best set of environmental

predictors of coral reef fish assemblages, (2) assess the extent

to which broad-scale spatial variables, including distances to

domain boundaries, can act as effective proxies for these envi-

ronmental variables in predictive models, and (3) provide a

modelling framework that also accounts for the effects of fine-

scale spatial autocorrelation on assemblage structure. The

resulting model provides spatially explicit, biogeographical

predictions of coral reef fish diversity and abundance on the

Great Barrier Reef, and a conceptual model that can be applied

to other ecosystems.

Predicting coral reef fish species richness and abundance
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METHODS

Study reefs

The Great Barrier Reef (GBR) consists of more than 2900 reefs

extending over 2300 km between 9 and 24°S latitude and cover-

ing approximately 350,000 km2. Since 1993, reef communities of

the GBR have been monitored annually by the Australian Insti-

tute of Marine Science’s (AIMS) Long Term Monitoring

Program (LTMP; Sweatman et al., 2005). Fish communities

have been intensively surveyed across 46 reefs in six sectors

(Cooktown/Lizard Island, Cairns, Townsville, Whitsunday,

Swains, Capricorn Bunkers) spanning much of the GBR (Fig. 1).

In each sector (with the exception of the Swains and Capricorn

Bunker sectors) at least three reefs were sampled in each of three

shelf positions (i.e. inner, mid and outer).

Survey methods and data collection

On each reef, three sites in a single habitat (the first stretch of

continuous reef on the north-east flank of the reef, excluding

vertical drop-offs) and separated by > 250 m were selected for

sampling. Within each site, five randomly selected and perma-

nently marked 50-m long transects were deployed roughly par-

allel to the reef crest, each separated by 10–40 m along the 6–9 m

depth contour. The sampling was evenly distributed among

years and transects except for 2005 (see below). Within these

transects, abundances of 251 species representing 10 families

were estimated each year. These 251 species were chosen because

they can be surveyed consistently at different sites and under

different conditions. This set of species excludes those that are

cryptic or nocturnal, and which therefore have a low (or highly

variable) probability of detection. The number of species sur-

veyed during these censuses provides a surrogate for the total

number of species present at a site, estimated using destructive

methods (C. Mellin et al. unpublished). Small site-attached

species such as damselfishes (Pomacentridae) were counted in a

1-m wide strip along the transect while transect width was

increased to 5 m for larger, mobile species (see Halford &

Thompson, 1996 for detailed methods). Only adult fish (> 1 year

old) were recorded, these being distinguished from juveniles by

their size and coloration. Sites were sampled by different divers

and annual calibration exercises were undertaken to ensure con-

sistency among divers (i.e. there was no systematic bias). The

methods used to calibrate of divers has proven effective (Halford

& Thompson, 1996).

Data organization

We were primarily interested in spatial patterns in fish diversity

and how they relate to environmental data collected during the
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recent past, so only fish data recorded since 2003 were consid-

ered. The dataset collected during 2005 was also discarded as

many reefs were not sampled during that year due to bad

weather. A total of 137 sites (i.e. three sites at each reef, except for

one reef of the Cooktown/Lizard Island sector with only two

sites) that were sampled in 2003, 2004, 2006 and 2007 were thus

included in the analysis. Reefs were sampled during the entire

year, although half were surveyed during summer months

(October to January), and the same site could be surveyed in

different months in consecutive years. Fish species richness (S)

was defined as the total number of fish species sampled at each

site and was obtained by pooling species across the five transects

within sites and across the four years. Similarly, for each site,

abundances were pooled across transects and across the four

years. Mean yearly estimates of total fish abundance at each site

(N) were calculated as the total abundance of fish recorded at

each site divided by the number of years sampled (four in all

cases). Both S and N were therefore defined for each site and

across years to match the resolution of environmental variables,

which were estimated across a 0.01° grid (see next section) and

not replicated in time. Pooling samples across years was appro-

priate because a Kruskal–Wallis test revealed no evidence of any

consistent year effect for fish species richness (P > 0.21) or

abundance (P > 0.77).

Environmental variables

A large set of environmental variables (see Table S1 in Support-

ing Information) was collated across a 0.01° grid at a national

scale as part of the Commonwealth of Australia’s Environment

Research Facility (CERF) Marine Biodiversity Hub (http://

www.marinehub.org/). These environmental variables included:

annual mean estimates of nitrate, oxygen, phosphate, silicate,

temperature and salinity, bathymetry, percentage cover of sedi-

ment components, and multiple indices of the strength and

frequency of the combined wave–current bed shear stress.

Among these indices of bed sheer stress, the percentage exceed-

ance was defined as the percentage of time for which the bed

shear stress was > 0.4 Pa, a threshold over which bed shear stress

represents an important driver of coral reef communities as

determined by preliminary exploratory analyses (e.g. Pitcher

et al., 2007). The ratio was defined as the bed shear stress in

excess of 0.4 Pa as a proportion of the total stress integrated over

time. Indices of ocean productivity using ocean colour data were

estimated by the Sea-viewing Wide Field-of-view Sensor

(SeaWiFS). All data sources and references for spatial interpola-

tion are annotated in Table S1. Each fish sampling site was

assigned the environmental variables of the closest node on the

0.01° grid. In addition, spatial variables, including longitude and

latitude and the shortest distances to the coast and to the ocean

at the edge of the GBR lagoon, were calculated for each fish

sampling site using a geographical information system. We used

the great-circle distance, that is, the shortest distance

between two points on the surface of the earth, for all distance

measures.

Analysis

The environmental dataset gathered a total of 32 variables, and

most of them were intercorrelated. For this reason, we used a

variable-reduction procedure to identify, among all available

environmental variables (Table S1), the subset of candidate pre-

dictors that minimized multicollinearity and maximized corre-

lation with fish species richness and abundance. This was done

in two steps: (1) a principal components analysis (PCA) in con-

junction with the analysis of the correlation matrix to identify

groups of correlated environmental variables, and (2) within

each group of correlated variables, a selection of either one or

two candidate predictors that maximized the percentage devi-

ance explained in species richness and abundance. This second

step was done using generalized linear models (GLM) assuming

a Poisson distribution and predicting successively S and N as a

function of each single environmental variable and its quadratic

term. When both fish variables (S and N) were best explained by

the same environmental variable, only that environmental vari-

able was selected; when fish variables were best explained by

different environmental variables, those two environmental

variables were selected as candidate predictors. A second PCA

was then performed with these candidate predictors as explana-

tory variables and other environmental variables as illustrative

to verify that the variable reduction procedure had not altered

the ordination of variables and individuals (i.e. fish sampling

sites).

Modelling

To gauge the relative importance of spatial and environmental

variables on reef fish assemblages, we fitted a second series of

GLMs to S and to N. For each response variable, a Poisson

distribution with a log link was assumed and the normal distri-

bution of model residuals was checked using the normal scores

of standardized residual deviance (Breslow, 1996). All possible

combinations of spatial and candidate environmental predictors

and their quadratic terms (in order to detect possible curvilinear

relationships), including cross products as well as power terms,

were considered. Asymptotic indices of information loss were

used to assign relative strengths of evidence to the different

competing models, with both Akaike’s information criterion

corrected for small sample sizes (AICc) as an index of Kullback–

Leibler (K-L) information loss and the dimension-consistent

Bayesian information criterion (BIC) (an approximation of the

Bayes factor given no informative prior information on relative

model support; Burnham & Anderson, 2002) used for model

comparisons. These indices identify the relative evidence of

model(s) from a candidate set, with the relative likelihoods of

candidate models calculated using AICc and BIC weights

(Burnham & Anderson, 2002). The K-L prior used to justify

AICc weighting can favour more complex models when sample

sizes are large (Burnham & Anderson, 2004; Link & Barker,

2006), so we considered BIC weights to determine the contribu-

tion of the most important variables, and AICc weights to

compute the weighted-average model predictions. Weighted-

Predicting coral reef fish species richness and abundance
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average model predictions were made over the set of models

considered (i.e. the sum of the predicted response variables mul-

tiplied by the model’s AICc weight) which did indeed maximize

prediction accuracy (Burnham & Anderson, 2004; Link &

Barker, 2006). For each model, the percentage deviance

explained (%DE) was used as a measure of a model’s

goodness-of-fit.

Spatial autocorrelation can systematically invalidate the

assumption of independent model errors, potentially distorting

parameter estimation and inflating the probability of Type I

errors (Legendre, 1993; Diniz-Filho et al., 2003). Spatial corre-

lograms assessing autocorrelation in species richness and abun-

dance (raw data or GLM residuals) as a function of the distance

between sites were generated using Moran’s I (Diggle & Ribeiro,

2007). Evidence for spatial autocorrelation was assessed at five

distance classes using Bonferroni correction (Legendre & Leg-

endre, 1998). The upper limits for these distance classes (i.e.

lags) were defined at 30, 63, 105, 143 and 203 km to maximize

the similarity of the number of observations in the different

classes (Diniz-Filho et al., 2003). When a spatial structure was

evident in GLM residuals, five spatial correlation structures

(linear, log, log-linear, exponential, spherical) were successively

considered and the structure that best fitted the observations

was identified (Diggle & Ribeiro, 2007; Bivand et al., 2008). This

correlation structure was then incorporated through the error

covariance matrix of spatial generalized linear mixed-effects

models (GLMMs) coding Site as a random effect. GLMMs were

optimized using penalized likelihood (Venables & Ripley, 2002).

Note that this method prevents the computation of the likeli-

hood and hence asymptotic indices of information loss, which

must then be approximated by those obtained from the non-

spatial model. Therefore, for each response variable, the non-

spatial GLMs were refitted as spatial GLMMs. We computed the

weighted-average model predictions based on AICc weights to

maximize prediction accuracy (Burnham & Anderson, 2002;

Link & Barker, 2006). Spatial correlograms of model residuals

were plotted to test the assumption that GLMM residuals were

not spatially autocorrelated.

Prediction

For each response variable, the mean prediction error of spatial

GLMMs was assessed using a 10-fold cross-validation (Davison

& Hinkley, 1997). This bootstrap resampling procedure esti-

mates a mean prediction error for 10% of observations that were

randomly omitted from the calibration dataset; this procedure

was iterated 1000 times. Spatial GLMMs were then used to gen-

erate and average predictions at a regional scale over the 0.01°

grid, i.e. for the GBR and within the perimeter of the sampled

reefs used to calibrate the models.

We also investigated whether the spatial extent of the calibra-

tion dataset influenced model predictions by recalibrating S and

N models using half the dataset, defined as the 50% of sites

located closest to a given sector, including the sites from that

sector. We then compared the resulting predictions for that

sector with those computed from the original models. This

analysis of spatial-scale effects was conducted on a central sector

with large reefs (Townsville) and a southern sector with small

reefs (Swains; Fig. 1).

RESULTS

Observed fish species richness (S) and abundance (N) averaged

(�standard deviation) 72 � 13 species and 744 � 341 individu-

als per site, respectively. The most common species were Chlo-

rurus microrhinos and Chlorurus sordidus (Scaridae) occurring

at more than 99% of the surveyed sites at least once during the

four years of surveys considered here. Pomacentrus lepidogenys,

Pomacentrus moluccensis and Neopomacentrus azysron (Poma-

centridae) were the most abundant species with mean abun-

dances of 97 � 92, 70 � 145 and 66 � 89 individuals per site,

respectively.

The variable-selection procedure identified a set of 12 envi-

ronmental variables that minimized multicollinearity and maxi-

mized the correlation with S and/or N (Table S1, Fig. S1a). The

first principal component, which explained 26.1% of the envi-

ronmental variation within the subset of environmental vari-

ables, primarily reflected a latitudinal gradient (see Fig. S1b).

The same result was observed when all environmental variables

were included in the PCA (not shown). These 12 environmental

variables were thus considered as candidate predictors as well as

the four spatial variables in our GLMs of S and N. For S, the

best-fitting model according to BIC included only the distance

to the ocean and to the coast, and explained 36.8% of the devi-

ance (Table 1). For N, the best fitting model according to BIC

explained 21.5% of the deviance and included the same predic-

tors, in addition to annual mean salinity (quadratic term),

nitrate and silicate concentration, and the standard deviation in

annual mean K490 levels (a measure of light attenuation). For

both species richness and abundance, the top-ranked model

according to AICc included all predictors and also maximized

the percentage deviance explained (i.e. 55.9 and 35.4%, respec-

tively, Table 1; only models outperforming the null models, and

null models themselves are shown). The change in model

ranking according to AICc or BIC indicates that the most parsi-

monious models (i.e. top ranked according to BIC) were not the

ones that maximized prediction accuracy (i.e. top-ranked

models according to AICc). Mean prediction errors of the top-

ranked models according to AICc were 8.99 and 3.59% for S and

N, respectively, and were the lowest across the entire model set,

whereas mean prediction errors of the top-ranked models

according to BIC were 14.34 and 4.06% for S and N, respectively.

We found evidence for spatial autocorrelation at lag = 30 km

in observations of S and N (P < 0.001; Fig. 2a), with the effect

persisting in the residuals of non-spatial GLM (P < 0.006; not

shown). The exponential spatial correlation structure gave the

best fit to the null model and was thus used in spatial GLMMs

for both response variables. Accounting for spatial autocorrela-

tion resulted in an increase of the percentage deviance explained

from 55.9 and 35.4% up to 62.4 and 71.9% in S and N, respec-

tively (see Fig. S2a), with scores of standardized residual devi-

ance being close to normality both for spatial models (see

C. Mellin et al.
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Fig. S2b) and non-spatial ones (not illustrated). Except for N at

lag = 105 km, there was much weaker evidence of spatial auto-

correlation in GLMM residuals (all P > 0.061; Fig. 2b). Mean

prediction errors of spatial GLMMs assessed using 10-fold

cross-validation were 7.4 species and 245.5 individuals per site,

respectively.

Mapping model predictions over the GBR highlighted differ-

ent spatial patterns for the two response variables. The greatest

predicted values of S were obtained for the northern sectors and

on the outer-shelf reefs (Fig. 3). Standard deviation in model

predictions was the highest for coastal reefs and between the

Whitsunday and Swains sectors. By contrast, N was predicted to

be greatest on the southernmost reefs of the GBR, but overall

had a bimodal pattern with higher values on northern and

southern reefs. Again, the greatest standard deviation in model

predictions was observed on coastal reefs and between the Whit-

sunday and Swains sectors. Finer-scale spatial variation was

observed for N than for S.

When the spatial extent was reduced to half the dataset

around a focal sector, the same models maximized the percent-

age deviance explained in response variables, even though

model rankings based on BIC scores could differ from analysis

using the entire dataset (not shown). For the Townsville and

Swains sectors, small-scale models explained 80.5 and 71.5% of

deviance in S, and 64.2 and 77.0% of deviance in N, respec-

tively. Generally, similar spatial patterns were observed for pre-

dictions computed from fine-scale or broad-scale models

(Fig. 4).

Table 1 Summary of generalized linear model (GLM) comparisons using Akaike’s information criterion corrected for small sample sizes
(AICc) and the Bayesian information criterion (BIC). Only the models outperforming the null model and the null models themselves are
shown. Response variables are species richness (S) and log-transformed abundance (N) of reef fishes. Shown are the number of samples
(n), model maximum log-likelihood (LL), number of parameters (k), change in AICc (DAICc), AICc weight (wAICc), change in BIC (DBIC),
BIC weight (wBIC) and the percentage deviance explained (%DE). %DE is a measure of the structural goodness-of-fit of the model. Model
sequences are ordered by increasing BIC for the two model sets. Spatial predictors include minimum distance to the coast (Dc) and
minimum distance to the ocean (Do). Environmental predictors include: Tm, annual mean sea surface temperature; Ts, standard deviation
in sea surface temperature; Sm, annual mean salinity; Om, annual mean oxygen concentration; Os, standard deviation in oxygen
concentration; Nm, annual mean nitrogen concentration; Si, annual mean silicate concentration; Ks, standard deviation in K490 (the
diffuse attenuation coefficient at a wavelength of 490 nm). See Table S1 for units. All_env includes all candidate environmental predictors in
Table S1, including four water chemistry variables, one substrate descriptor, three indices of ocean productivity and depth.

Model LL k DAICc wAICc DBIC wBIC %DE

S (n = 137)

Dc + Do -344.0 4 7.7 0.016 0.0 0.989 36.8

Tm2 + Ts + Sm2 + Om + Os -339.2 9 7.6 0.016 9.6 0.008 43.2

Tm2 + Ts + Sm2 + Om + Os + Dc + Do -334.8 11 6.6 0.028 15.4 0.003 48.3

All_env -331.2 13 2.8 0.180 17.7 0.000 51.5

All_env + Dc + Do -326.8 15 0.0 0.760 18.8 0.000 55.9

Null -367.1 2 47.3 0.000 31.7 0.000 0.0

logN (n = 137)

Nm + Sm2 + Dc + Do + Si + Ks -47.6 8 6.5 0.042 0.0 0.529 21.5

Nm + Sm2 + Si + Ks -52.6 6 11.8 0.004 0.3 0.455 17.8

Nm + Sm2 + Dc + Do + Si + Ks + Om + Os -47.0 10 9.9 0.008 8.2 0.010 22.4

All_env + Dc + Do -35.7 15 0.0 0.946 9.4 0.006 35.4

Null -73.3 2 44.5 0.000 22.7 0.000 0.0
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Figure 2 Spatial correlograms of Moran’s I as a function of
increasing distance between sites (lags), respectively, up to 30, 63,
105, 143 and 203 km. (A) Spatial autocorrelation in observations
of fish species richness (S) and abundance (N). The continuous
line represents the exponential spatial structure assumed in the
spatial generalized linear mixed-effects models (GLMMs). (B)
Spatial autocorrelation in GLMM residuals. Error bars represent
standard deviations in Moran’s I. White diamonds show Moran’s
I-values for which zero was excluded from the 95% confidence
interval after a Bonferroni correction.
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DISCUSSION

The mid-domain effect, when applied in species distribution

models, leads to the expectation of species richness being great-

est at the centre of the domain (e.g. Connolly et al., 2003; Bell-

wood et al., 2005). However, because the processes that display

gradients across the domain are complex and act at different

scales, spatially explicit predictions of species richness and

abundance differed from this pattern. Distances to domain

boundaries (i.e. coast and ocean) provided the most parsimoni-

ous model of species richness and were also important predic-

tors of abundance, suggesting that relative geographical location

alone can provide an ecologically relevant predictor in species

distribution models. Whereas geographical coordinates can

sometimes fail in predicting spatial patterns in biodiversity (e.g.

Greve et al., 2008), our results suggest that a relative measure of

geographical location might be more appropriate in represent-

ing complex environmental gradients. This approach is broadly

applicable across species distribution models in which variables

such as the distance to mountain ranges, lake edges or oceans

could each be tested as an alternative to geographical coordi-

nates.

Most environmental variables we examined on the Great

Barrier Reef displayed strong cross-shelf gradients such as salin-

ity (Burrage et al., 2002), temperature and chlorophyll (Liston

et al., 1992) that are influenced by freshwater inputs and terrig-

enous influences near the coast, and by oligotrophic oceanic

waters at the shelf edge. Indeed, the distance between the coast

and the ocean increases from northern to southern sectors on the

Great Barrier Reef; therefore, for northern sites both distances

would be short, whereas for southern sites at least one of these

distances would be long. Our models highlighted these complex

relationships between spatial, environmental and biological vari-

ables, providing a framework for the development of approaches

that incorporate multiscale spatial and environmental variables.

The most parsimonious model of fish species richness only

included relative geographical location (i.e. distances to the coast

and to the ocean), while a combination of spatial and environ-

mental predictors explained up to 55.9% of the deviance in fish

species richness. The most parsimonious model of fish abun-

dance included relative geographical location, indices of ocean

productivity, salinity and water composition. The analysis of

spatial-scale effects showed that using half the data resulted in

spatial predictions that were similar to those computed from

broad-scale models, indicating that spatial patterns predicted by

the model were robust with respect to the spatial extent of the

calibration dataset, and suggesting that similar predictions could

be achieved using half of the dataset only.

Incorporating fine-scale spatial autocorrelation into our

models doubled the deviance explained in fish abundance, and

substantially increased the deviance explained in fish species

richness. Among ecological processes that drive population

dynamics in marine ecosystems, contagiously distributed biotic

processes such as larval dispersal, reproduction, competition

and predation have the potential to induce spatial autocorrela-

tion in observations (Legendre & Legendre, 1998). Such models

might thus be biased unless they explicitly incorporate spatial

organization of the populations and communities of interest

among their predictor variables. Such effects of spatial autocor-

relation, however, remain largely overlooked in marine species

distribution models, especially in coral reef ecosystems. Our

spatial GLMMs were efficient in coping with spatial autocorre-

lation, and so were able to incorporate the underlying processes

leading to these spatial associations. We strongly support further

developments of GLMM or other statistical techniques that

account for spatial autocorrelation in marine species distribu-

tion models to predict and map realistic assemblage distribution

patterns.
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Figure 3 Spatial predictions of species richness and abundance
of coral reef fishes on the Great Barrier Reef. A two-dimensional
colour key is used to represent both mean estimate (hue) and
standard deviation (saturation) of predictions. Insets show sectors
selected for the spatial scale analysis (Fig. 4). TO = Townsville,
SW = Swains.

C. Mellin et al.

Global Ecology and Biogeography, 19, 212–222, © 2009 Blackwell Publishing Ltd218



In addition to the spatial context, several environmental vari-

ables emerged as important predictors of fish species richness,

including mean annual temperature and standard deviation (a

proxy for seasonal temperature variability). Temperature has

been suggested to act as a proxy for energy input in coral reef

ecosystems (Fraser & Currie, 1996) and as a predictor of species

richness (e.g. Roy et al., 1998; Macpherson, 2002; Bellwood

et al., 2005). However, the latter assumption had never been

tested in predictive modelling. Moreover, temperature effects on

fish species richness are poorly understood because both vari-

ables are spatially autocorrelated (Mora & Robertson, 2005),

which can lead to spurious correlations unless spatial autocor-
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Figure 4 Spatial predictions of species richness and abundance of coral reef fishes for the sectors of Townsville (TO) and Swains (SW; see
location on Fig. 1) computed from fine- and broad-scale models. Fine-scale models were built using half the dataset, including the nearest
sites from the sector of interest. Broad-scale models were built using the entire dataset. A two-dimensional colour key is used to represent
both mean estimate (hue) and standard deviation (saturation) of predictions.
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relation is properly considered. For the first time, models

developed in this study clearly demonstrate that once spatial

autocorrelation has been accounted for, annual mean tempera-

ture and its seasonal variation still remain important additional

predictors of fish distribution.

Our models also revealed the importance of mean annual

salinity and nitrate concentration as important predictors.

These results are consistent with previous suggestions that varia-

tion in salinity induces physiological stress for corals and asso-

ciated organisms (Rosen, 1971; Kassahn et al., 2007), although

this influence might act at a scale of < 10 km (e.g. a river mouth

or barrier reef pass; Fraser & Currie, 1996). Annual mean nitrate

concentration is also an important predictor of fish abundance,

supporting the idea that biogeochemical processes can be

important in the structuring of reef communities, for instance

through the development of algal turf consumed by herbivorous

fishes (McClanahan et al., 2003). Nitrate concentration was also

the best predictor of the distribution of coastal fish species along

latitudinal gradients in both the eastern and western Atlantic

(Macpherson, 2002). Our results demonstrate that between

these broad and fine spatial scales, nitrate concentration remains

an effective predictor of fish species richness and abundance,

thus unifying conclusions on the importance of this predictor

across scales.

Spatial patterns in predictive maps of reef fish biodiversity

generated by our models reflected strong latitudinal and cross-

shelf gradients. The latitudinal gradient predicted in reef fish

diversity can result from the latitudinal gradient in temperature,

and it is consistent with observations that fish species richness

decreases as the distance from the Indo-Australian Archipelago

increases (e.g. Bellwood & Hughes, 2001). Different hypotheses

have been formulated to explain this latitudinal gradient,

including environmental conditions or past disturbance events

(e.g. Fraser & Currie, 1996), or geometric constraints implied by

boundaries of the Indo-Pacific domain (Connolly et al., 2003;

Bellwood et al., 2005). The cross-shelf gradient is consistent

with recent work suggesting that the structure of fish commu-

nities would correlate with mesoscale oceanographic features

(M. J. Emslie et al., unpublished). Our approach was not

designed to test these hypotheses, but it reproduced well the

broad-scale and well-known spatial patterns of coral reef fish

biodiversity on the GBR.

The development of such multiscale species distribution

models is now warranted by an increasing availability of global-

scale, high-resolution remotely sensed environmental data

(Mellin et al., 2009), but several potentially important aspects

require attention. First, even though environmental datasets can

reasonably be considered as appropriate for predicting broad-

scale, latitudinal and cross-shelf patterns of fish species richness

and abundance, more research is required to assess their predic-

tive power at the reef scale. Indeed, interpolated data and point-

based data might perform differently as predictors depending

on the spatial scale at which fish assemblages respond to envi-

ronment heterogeneity. Model applicability to the entire reef

should also be assessed given that (1) these fish data were col-

lected from a single habitat (the north-east flank of each reef)

and (2) the resolution of these environmental data does not

necessarily reflect the fine-scale patterns of environmental varia-

tion occurring in this habitat. In the view of investigating scale

effects on model performance, a preliminary study used spatial

exponential weighting to simulate an increasing spatial scale

around a focal point and look at how predictor ranking and

model performance change with increasing spatial scale (i.e. the

spatial extent of the training dataset; C. Mellin et al., unpub-

lished). This procedure showed that the importance of geo-

graphical predictors only appeared at a medium (20-km) spatial

scale, below which fine-scale variation in environment provided

better predictors of species richness. This analysis also provides

a tool to determine the spatial scale optimizing model cost-

effectiveness (i.e. maximizing the deviance explained in the

response variable when minimizing the spatial extent of the

training dataset). Second, predicting species richness and abun-

dance does not predict species composition, and sites with

similar fish species richness might yield completely different

species compositions. The contribution of population processes

to the spatial structure identified in species richness should also

be assessed in further studies, provided that population struc-

ture and demography are well documented. Ideally, the kinds of

models developed here should be coupled with multivariate

models of reef assemblages, including population structure and

accounting for taxonomy, species life-history traits, diet and

susceptibility to environmental and anthropogenic impacts.

Over the past few decades, coral reefs have suffered increasing

human-induced disturbances that have affected the structure of

reef communities and their potential resilience to these distur-

bances (Nyström et al., 2000; Bellwood et al., 2004). Thermal

stress and ocean acidification, in particular, are expected to

increase in the coming decades, with serious implications for the

persistence of reef corals and associated organisms (Hoegh-

Guldberg et al., 2007; McClanahan et al., 2007). This situation

mandates the urgent need for cost-effective conservation tools

for predicting changes in biodiversity to facilitate timely and

effective intervention where necessary. Species distribution

models can provide such tools because they allow prediction of

biodiversity patterns in areas where only environmental data are

available. Combining spatially explicit predictions of univariate

and multivariate indices of biodiversity patterns can indeed

offer efficient, pluralistic and comprehensive tools for under-

standing species responses to environmental variability – a criti-

cal step towards the sustainable management of biodiversity.
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