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Abstract. The growing demand for efficient and effective mosquito control requires a
better understanding of vector population dynamics and how these are modified by
endogenous and exogenous factors. A long-term (11-year) monitoring data set describing
the relative abundance of the saltmarsh mosquito (Aedes vigilax) in the greater Darwin region,
northern Australia, was examined in a suite of Gompertz-logistic (GL) models with and
without hypothesized environmental correlates (high tide frequency, rainfall, and relative
humidity). High tide frequency and humidity were hypothesized to influence saltmarsh
mosquito abundance positively, and rainfall was hypothesized to correlate negatively by
reducing the availability of suitable habitats (moist substrata) required by ovipositing adult
female mosquitoes. We also examined whether environmental correlates explained the
variance in seasonal carrying capacity (K ) because environmental stochasticity is hypothesized
to modify population growth rate (r), carrying capacity, or both. Current and lagged-time
effects were tested by comparing alternative population dynamics models using three different
information criteria (Akaike’s Information Criterion [corrected; AICc], Bayesian Information
Criterion [BIC], and cross-validation [C-V]). The GL model with a two-month lag without
environmental effects explained 31% of the deviance in population growth rate. This increased
to .70% under various model combinations of high tide frequency, rainfall, and relative
humidity, of which, high tide frequency and rainfall had the highest contributions. Temporal
variation in K was explained weakly by high tide frequency, and there was some evidence that
the filling of depressions to reduce standing water availability has reduced Aedes vigilax
carrying capacity over the study period. This study underscores the need to consider
simultaneously both types of drivers (endogenous and exogenous) when predicting mosquito
abundance and population growth patterns. This work also indicates that climate change, via
continued increases in rainfall and higher expected frequencies and intensities of high tide
events with sea level rise, will alter mosquito abundance trends in northern Australia.
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INTRODUCTION

Aside from the irritation and annoyance of mosqui-

toes to humans and livestock, the threat of pathogens

transmitted by mosquitoes is a major public health

problem in much of the world (Gubler 1991, World

Health Organization 1995, Sharp and Le Sueur 1996).

Mosquito-borne diseases such as malaria, dengue, yellow

fever, Japanese encephalitis, West Nile virus, and Ross

River virus are just a few major representatives of a long

list of mosquito-transmitted diseases that have histori-

cally plagued human civilization (Gubler 1998, Gratz

1999). Malaria alone causes a public health problem in

over 100 countries worldwide where some 40% of the

world’s human population resides (World Health Orga-

nization 1988). It has been estimated that the incidence of

malaria in the world may be 300–500 million clinical

cases annually (Breman et al. 2004, Snow et al. 2005,

World Health Organization and UNICEF 2005), and

there is evidence that the prevalence, morbidity, and

mortality induced by zoonotic arboviral diseases world-

wide are on the rise (Gubler 2002). Furthermore, global

warming is likely to increase the range and abundance of

mosquitoes in most countries, resulting in increased

frequency of many mosquito-borne diseases (Patz and

Reisen 2001, Hay et al. 2002). As such, the mounting
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quest for efficient and effective mosquito control
(Bergquist 2001) requires a better understanding of
vector population dynamics and how these are modified
by intrinsic and extrinsic processes (de Little et al. 2007,
Bradshaw 2008, Chamaillé-Jammes et al. 2008).

The transmission frequency and extent of mosquito-

borne diseases depend on a complex set of factors, of

which vector distribution, longevity, and abundance are

three of the most important (Gubler 1998, Whelan et al.

2003). Mosquitoes require an aquatic environment in

which to nurture their larval and pupal stages, with

suitable mosquito larval habitats including vegetated

margins of lakes and streams, salt marshes, floodplains,

man-made wetlands, and physically disturbed environ-

ments (Russell and Whelan 1986, Russell 1987, Rej-

mankova et al. 1991, Norris 2004, Sattler et al. 2005).

Environmental factors important for adult mosquito

survival and dispersal include optimal humidity, tem-

perature, and wind conditions (Muir 1988, Linthicum et

al. 1999), although different species demonstrate dis-

tinctly different ecological preferences, such as Anoph-

eles stephensi selecting urban areas vs. A. gambiae

selecting rural habitats (Robert et al. 2003, Scholte et

al. 2005). Mosquito numbers also vary extensively over

seasons and years, with the amount of rainfall, the

physical nature of the habitat, or the height and

frequency of tidal inundation (for saltwater-breeding

species) accounting for much of the temporal and spatial

variation observed (Russell 1986, 1987). In addition,

human activities via physical, chemical, and biological

control methods can change mosquito population

abundance and distribution by modifying breeding

habitats and individual survival probability (World

Health Organization 1982, 2003).

Most previous studies investigating the factors corre-

lated with mosquito abundance have put particular

emphasis on determining the exogenous (environmental)

drivers of abundance (Russell 1986, Su et al. 2003,

Kunkel et al. 2006); however, mosquito population

dynamics can also demonstrate strong intrinsic (density-

dependent) regulation (Bradshaw and Holzapfel 1989,

Leonard and Juliano 1995, Gimnig et al. 2002, Kiflawi et

al. 2003, Yang et al. 2008). Exogenous (extrinsic)

processes include stochastic environmental components

that affect demographic rates irrespective of population

density. Endogenous (intrinsic) population regulation

works primarily through negative density feedback on

survival or reproductive rates that decline as density

increases (Turchin 2003a). Failing to take intrinsic

dynamics into account can lead to an overestimation

of the medium- to long-term effectiveness of density

control methods, such as insecticides or habitat modi-

fication. This results from falsely attributing changes in

population growth rate resulting exclusively from

density feedback in survival and fertility to contempo-

raneous changes in control effort (Turchin 2003a).

The Gompertz dynamical feedback model describing

a negative log-linear relationship between population

growth rate (r) and insect density (Woiwod and Hanski

1992, Zeng et al. 1998, Turchin 2003a, Sibly et al. 2005,
Brook and Bradshaw 2006), predicts an exponential

decrease in r with greater population size (Turchin
2003b). This functional form tends to promote over-

compensatory population responses such as rapid peaks
and crashes (oscillations) after successive generations
(Hilker and Westerhoff 2007), especially when the rate

of decline in r is maximized at a net annual growth of
zero (Owen-Smith 2006).

In this study we examine the relative contribution of
density feedback mechanisms and environmental sto-

chasticity on the residual variation in population growth
rate by incorporating three plausible environmental

correlates hypothesized to limit mosquito populations
into a suite of density-feedback models. We focus our

analysis on the northern saltmarsh mosquito (Aedes
vigilax) because of its prime importance as a vector of

Ross River virus (RRV) disease and Barmah Forest
virus (BFV) disease (Whelan et al. 1997, Russell 1998).

These human infections are the most commonly
reported mosquito-borne diseases in Australia, with

RRV accounting for 45% and BFV for 30% of all such
cases (Liu et al. 2005). Specifically, we use a long-term

monitoring data set (11 years with weekly trapping) for
A. vigilax in the greater Darwin area, northern Australia
to (1) quantify the effects of high tide frequency, rainfall,

and relative humidity in controlling r (in addition to
intrinsic regulation), using multi-model information-

theoretic and Bayesian inference estimates of relative
model parsimony, and (2) evaluate the change in

seasonal carrying capacities (K ) (Bjørnstad and Grenfell
2001) over the 11 years of monitoring as a function of

environmental and management correlates. In the
greater Darwin region, high tides .7.4 m can generate

temporary saltwater habitats ideal for the oviposition
and larval development of the saltmarsh mosquito A.

vigilax (Whelan 1987), similar to other saltwater-
breeding mosquito species (Harrington and Harrington

1961, Russell 1998). We therefore hypothesized that the
frequency of high tides exceeding 7.4 m would positively

influence the abundance of this species. Additional
residual variation in abundance was hypothesized to
result from average relative humidity and total rainfall

over the time intervals investigated (Day et al. 1990,
Farid et al. 2000, Lee and Rowley 2000). By taking into

account both exogenous and endogenous control of
mosquito population dynamics, we aim to provide a

quantitative model of sufficient realism to guide the
development of optimized control strategies for A.

vigilax and other tropical saltmarsh mosquito species.

METHODS

Mosquito abundance data

Monitoring data were collected by the Medical
Entomology Branch of the Northern Territory Depart-

ment of Health and Community Services in 11 locations
in and around Darwin, Australia for routine vector
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surveillance (Whelan 1989, Yang et al. 2008). The
mosquito populations were sampled with CO2-baited
mosquito traps (Rohe and Fall 1979), which were

operated overnight once per week at locations between
adjacent swamp and residential development areas
(Whelan 1989). Although human-baited collections have

been shown to be effective samplers of other mosquito
species such as A. aegypti, which feeds specifically on

humans (e.g., Schoeler et al. 2004), CO2-baited light
traps offer the advantages of being less labor-intensive,
supply all-night collection, offer no bias based on

individual attractiveness or skill of the collector, and
are particularly effective for many generalist-feeding
Australian species such as A. vigilax and C. annulirostris

(Russell 1986, Van Essen et al. 1994, Miller et al. 2005).
CO2-baited traps also tend to target nulliparous females
more effectively than other methods, but may not

always be as efficient as backpack aspirators or BG-
Sentinels (Williams et al. 2006). Regardless, they are

effective at registering relative adult abundance and can
be used to estimate population rates of change (Whelan
et al. 2005). The distance between each pair of traps

varied from 1 to 3 km, with the traps covering a total
area of 63.2 km2. To avoid the possible confounding
effects of age structure and overlapping generations on

our assessment of density feedback (Turchin 2003a),
monthly and every two weeks, female A. vigilax

population density data were prepared by averaging
weekly density data. Only female population density
data were used due to this gender’s blood-feeding

behavior, and resultant importance for disease trans-
mission. Yang et al. (2008) demonstrated that A. vigilax
exhibited strong spatial homogeneity in the study

region. As such, the data for these analyses were pooled
among the 11 trap locations as arithmetic mean

abundance. The complete data set spans November

1994 to December 2005. The monthly population

density of A. vigilax was depicted as time series plot

and monthly variation over all years (Figs. 1 and 2a).

Environmental data

Frequency of high tides .7.4 m/month, monthly

relative humidity (percentage), and total rainfall (milli-

meters) data covering the same interval as the mosquito

abundance data sets were all provided by the Australian

Government Bureau of Meteorology (available online).8

The longest-term weather data were available only from

the Darwin Airport station (1282501200 S, 13085302400 E),

which is situated roughly in the center of the 63.2-km2

study area bounded by the mosquito trap locations.

Monthly variation in the environmental data examined

over all years is shown in Fig. 2b–d.

Management data

The physical methods used to reduce the suitable

habitats of mosquito larvae in saltmarsh swamps around

Darwin included reduction or elimination of mosquito

breeding areas via the infilling of depressions that can

collect water, maintenance of existing drains, and

constructing new drains in breeding stands of water

(Whelan 1989). A combination of mosquito larvicides

has also been used as a direct control measure to

accompany the habitat engineering program. In Darwin,

the bacterial insecticide, Bacillus thuringiensis var.

israelensis (B.t.i), and temephos (organophosphorus

insecticide) were widely used for larval control, broad-

cast via both ground and aerial helicopter control

operations. Adulticides, which are less specific than

larvicides, are generally less effective due to the ability of

FIG. 1. Time series plot of Aedes vigilax monthly abundance from 11 traps (each line represents the time series from a single
trap) between 1994 and 2005 (192 months total). Temporal variability overwhelms spatial differences.

8 hwww.bom.gov.aui
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adult mosquitoes to disperse over wide areas (e.g., Chung

et al. 2001). To provide a qualitative assessment of the

potential effectiveness of physical and chemical manage-

ment interventions on mosquito carrying capacity, we

obtained a yearly summarized time series data set for the

.60 km2 area describing the number of drains connect-

ed, the total area (e.g., depressions) filled, the number of

spraying days, and the number of hectares sprayed each

year over the entire time interval investigated from the

Medical Entomology Branch of the Northern Territory

Department of Health and Community Services.

Dynamical models

The Gompertz-logistic (GL) model describes the

linear relationship between population growth rates (r)

and logarithm-transformed density (relative Nt) and is

characteristic of insect populations (Woiwod and

Hanski 1992, Zeng et al. 1998, Turchin 2003a, Sibly et

al. 2005, Brook and Bradshaw 2006). Under the GL

model, carrying capacity (K ) is defined as the log(N ) at

which r is equal to zero. We expanded the GL model to

include time-variant environmental conditions, namely,

high tide frequency, rainfall, and relative humidity.

Given our lack of knowledge regarding the potentially

complex interaction between density regulation, environ-

mental variation, human control efforts, and modification

of carrying capacity, our approach was to modify the GL

models in three phases. Model 1 (Eq. 1) relates population

growth rate (r) to density, with residual variation in r

explained by stochastic environmental effects; this model

assumes carrying capacity (K) is invariant over the time

series. Model 2 (Eq. 2) is a variant of the GL model in

which K fluctuates as a function of environmental

variability (‘‘K-ratio’’ model) (see Hone and Clutton-

Brock 2007). Model 3 (Eq. 3) is the combination of

Models 1 and 2, which allows environmental stochasticity

to modify r and K simultaneously:
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where Nt denotes mosquito population size at time t, rt¼

realized population growth rate, rm¼maximal intrinsic r,

K ¼ carrying capacity, b ¼ (b0 b1 � � � bn), Et ¼ vector of

environmental factors (E1t E2t � � � Ent), and et represents
unexplained residual error. We also considered lags of two

months on the density feedback mechanism (cf. Turchin

1990). All models were fitted using maximum-likelihood

estimation.

All analyses were done using the R Package version

2.4.0 (R Development Core Team 2004). Model

comparisons were based on multi-model inference

(MMI) using three separate methods: (1) Akaike’s

Information Criterion corrected for small sample sizes

(AICc) as an estimate of Kullback-Leibler (K-L)

information loss (Akaike 1973, Burnham and Anderson

FIG. 2. Box-and-whisker plots showing the monthly vari-
ation in (a) population density of A. vigilax, (b) frequency of
high tide (.7.4 m), (c) rainfall (mm), and (d) relative humidity
(%) in the greater Darwin region, Northern Territory,
Australia. Box-and-whisker plot indicates the maximum, upper
quartile, median, lower quartile, and minimum values. Open
diamonds are outliers.
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2002), (2) the dimension-consistent Bayesian (Schwartz)

Information Criteria (BIC) as an estimate of the

Bayesian odds ratio (Link and Barker 2006), and jack-

knifed cross-validation for one-step-ahead prediction

(C -V) (Turchin 2003a). For AICc and BIC, we

calculated the difference between the model’s criterion

and the top-ranked model (Di) and the relative model

weights (wi ) (Link and Barker 2006). Thus, the strength

of evidence (wAICc, wBIC, wC-V) for any particular

model varies from 0 (no support) to 1 (complete

support) relative to the entire model set. However, the

K-L prior used to justify AICc weighting can favor more

complex models (with many tapering effects) when

sample sizes are large (Link and Barker 2006). There-

fore, BIC is generally considered a better procedure for

ranking models when sample sizes are large and the goal

is to determine the principal drivers of complex

relationships (Link and Barker 2006). AICc and C-V

therefore provide information on the existence of

tapering effects necessary to maximize predictive capac-

ity (Link and Barker 2006). As such, we considered BIC

weighting to determine mosquito population dynamical

model ranking (n ¼ 134), and AICc and C-V weighting

to examine shifts in carrying capacity (n ¼ 21).

Carrying capacity

Carrying capacity (K ) can be broadly defined as ‘‘the

theoretical equilibrium population density a given

(average) set of environmental conditions (e.g., food

availability, breeding habitat) can support’’ (del Monte-

Luna et al. 2004). Under classic negative-feedback

density dependence, birth rates often decrease, and

death rates typically increase as population density

approaches K, with the mathematical definition of K

being the point where these two rates are equal (i.e.,

population growth, r ¼ 0). Although variants of the

logistic model generally consider K to remain fixed over

the time interval investigated, finite resources can still

vary with time, causing K to be different at each time

point (Bjørnstad and Grenfell 2001, del Monte-Luna et

al. 2004).

Temporal variation in K can therefore be explained by

adjustments in limiting resources; for example, in the

typical monsoon pattern (dry/wet season) in northern

Australia, the relative seasonal carrying capacity of

mosquitoes will shift according to the availability of

water among and within seasons. We therefore tested for

correlations between interval-specific carrying capacities

and the environmental parameters measured to explain

variation in the ecosystem’s capacity to support

mosquito populations. Carrying capacity here is differ-

ent from the Models 2 and 3 explained above, which

assume K is an instant dynamic variable rather than a

relatively constant parameter. The temporal variation in

K modeled as a function of these same environmental

correlates asks a different, but related question: to what

extent can environmental conditions be used to predict

the maximum potential mosquito population size in any

given season and year?

To investigate this question, we split the relative

abundance time series for A. vigilax from 1994 to 2005

by monsoonal (dry/wet) season and used the fortnightly

abundance averages to estimate K from the Gompertz-
logistic model described previously for each year. This

resulted in a total of 22 seasonal estimates of K over 11

years. This K time series was then used as a response

variable (log-transformed) in linear models to investi-

gate the correlation with the environmental factors

described in the previous analysis (high tide frequency,
total rainfall, and average relative humidity):

logeðKÞ ¼ a0 þ b 3 Et þ et et ; Nð0;r2Þ ð4Þ

where K ¼ Gompertz-logistic carrying capacity, b ¼ (b0
b1 � � � bn), Et¼ vector of seasonal environmental factors

(E1t E2t � � � Ent), and et represents unexplained error.

MMI-ranking procedures were applied to determine
relative model support.

RESULTS

Environmental variables (frequency of high tides,

rainfall, and relative humidity), when treated as

stochastic exogenous forces (Eq. 1), explained more
variation in population growth rate (r) than their

adjustments to mosquito carrying capacity (Eq. 2; Table

1). Models with K-adjusting environmental components

(log(K ) 3 Et) were poorly fitted, demonstrating that

carrying capacity is relatively constant over the interval

and does not fluctuate markedly depending on environ-
mental conditions (Tables 1 and 2). Rather, environ-

mental stochasticity appears to alter the relative rate at

which mosquitoes respond to their own density. As such,

the combination approach including environmental

forcing of r and K (Eq. 3) does not provide better

explanatory power than the simpler Model 1 approach
using only stochastic exogenous variables as correlates.

The explanation of deviance in r increased from 31%

up to .70% after the Gompertz-logistic model with a

two-month lag integrated environmental effects (high-

tide frequency, rainfall, and relative humidity; Table 3).

Exogenous environmental conditions and endogenous

density feedback contributed to explaining the variation
in r by ;58% (i.e., 43% of 74%; Table 3) and ;42% (i.e.,

31% of 74%; Table 3), respectively. Put more simply,

environmental factors explained slightly more than one-

half of the total explainable variation in population

growth, with the remaining proportion explained by

negative density feedback. Thus, negative density
feedback is nearly as important as environmental

conditions when predicting the abundance of mosquito

populations over time.

High tide frequency was the most important determi-

nant of exogenous variation in r, with weaker effects of

rainfall and relative humidity. The model with the

greatest support (wBIC ¼ 0.866) included high-tide
frequency and rainfall with a two-month lag (also best
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supported by wC-V; Table 3). The coefficients of high

tide frequency in lag 1 and lag 2 are b1 ¼ 0.18 (SE ¼
0.054; Fig. 3a) and b2 ¼ �0.13 (SE ¼ 0.051; Fig. 3b),

respectively. The relationship between r and rainfall was,

in contrast, consistently negative over both lag intervals,

albeit much weaker (b3 ¼�0.0019, SE ¼ 0.00052; b4 ¼

�0.0006, SE ¼ 0.00052; Fig. 3c, d). Among the

environmental variables considered, high tide frequency

with a second-order lag explained a larger component of

the variation than rainfall (%DE ¼ 55% vs. 43%,

respectively), with an even smaller contribution from

relative humidity (%DE ¼ 41; Table 3).

TABLE 2. Ranking of linear regression models examining the hypothesized relationships between carrying capacity (K ) and
environmental variables: frequency of high tides (Tides), rainfall (Rain), and relative humidity (RH), as well as a temporal
sequence (t) to detect trending.

Model %DE DAICc wAICc DBIC wBIC R2
pred wC-V

K;1 0.0 0.000 0.229 0.000 0.264 �0.098 0.123
K;Tides 15.9 0.051 0.223 0.439 0.212 �0.009 0.312
K;Rain 11.0 0.870 0.148 1.259 0.141 �0.114 0.105
K;RH 9.8 1.072 0.134 1.460 0.127 �0.109 0.109
K;t 0.1 2.682 0.060 3.071 0.057 �0.234 0.034
K;Tidesþt 16.7 2.925 0.053 3.385 0.049 �0.137 0.084
K;Rainþt 12.3 3.671 0.037 4.132 0.034 �0.275 0.024
K;RainþRH 11.0 3.889 0.033 4.350 0.030 �0.168 0.062
K;RHþt 10.6 3.951 0.032 4.411 0.029 �0.270 0.025
K;RainþTides 17.5 6.193 0.010 6.347 0.011 �0.291 0.021
K;RainþTidesþt 17.5 6.193 0.010 6.347 0.011 �0.291 0.021
K;RHþTides 16.8 6.316 0.010 6.470 0.010 �0.310 0.018
K;RHþTidesþt 16.8 6.316 0.010 6.470 0.010 �0.310 0.018
K;RainþRHþt 12.3 7.068 0.007 7.222 0.007 �0.331 0.015
K;RainþTidesþRH 21.7 9.337 0.002 8.732 0.003 �0.318 0.016
K;RainþTidesþRHþt 21.7 9.337 0.002 8.732 0.003 �0.318 0.016

Notes: Also shown for each model is the percentage deviance explained (%DE) as a measure of goodness of fit, and three ranking
criteria based on Akaike’s Information Criterion corrected for small samples (AICc), Bayesian Information Criterion (BIC), and
cross-validation (C-V). The change in information criterion relative to the top-ranked model (DAICc, DBIC), predicted R2 for the
C-V method describing model rank, and model weights (wAICc, wBIC, wC-V) are shown.

TABLE 1. Ranking of models used to correlate environmental variables with population rate of change (r).

Model %DE DAICc wAICc DBIC wBIC R2
pred wC-V

GL þ high tide frequency

GL.1.2.Stenv 54.8 0.0 1.000 0.0 1.000 0.673 1.000
GL.1.2 31.4 27.0 ,0.001 21.6 ,0.001 0.597 ,0.001
GL.1 15.1 46.6 ,0.001 38.5 ,0.001 0.531 ,0.001
GL.1.Stenv 15.1 48.7 ,0.001 43.3 ,0.001 0.524 ,0.001
GL.1.Stenv.Kenv 10.7 54.5 ,0.001 49.1 ,0.001 0.493 ,0.001

GL þ rainfall

GL.1.2.Stenv 43.4 0.0 0.800 2.6 0.212 0.307 1.000
GL.1.Stenv 38.0 2.8 0.197 0.0 0.779 0.147 ,0.001
GL.1.2 31.4 11.7 0.002 8.9 0.009 0.194 ,0.001
GL.1 15.1 31.3 ,0.001 25.8 ,0.001 0.061 ,0.001
GL.1.Stenv.Kenv �18.8 78.6 ,0.001 75.8 ,0.001 �0.160 ,0.001

GL þ relative humidity

GL.1.2.Stenv 40.8 0.0 0.981 0.0 0.778 �0.070 1.000
GL.1.2 31.4 8.2 0.016 2.8 0.191 �0.210 ,0.001
GL.1.env 28.6 11.9 0.003 6.5 0.031 �0.270 ,0.001
GL.1 15.1 27.8 ,0.001 19.7 ,0.001 �0.408 ,0.001
GL.1.Kenv �26.6 83.4 ,0.001 75.2 ,0.001 �1.099 ,0.001

Notes: The Gompertz-logistic (GL) model (rt¼ rm[1� log(Nt)/log(K )], where rm¼maximum r, Nt¼abundance at time t, and K¼
carrying capacity) describing nonlinear reduction in r with N was used as the base density-feedback model that examined the
additional contribution of each of three environmental variables in turn: (1) frequency of high tides, (2) rainfall, and (3) relative
humidity. Variants of the GL model included (1) lags of interval 1 and 2 without environmental correlates, (2) environmental
variables as a stochastic effect on r (Stenv), (3) environmental correlates modifying carrying capacity (‘‘K-ratio’’; Kenv), and (4)
environmental correlates modifying r and K simultaneously (Stenv.Kenv). Also shown for each model is the percentage of deviance
explained (%DE) as a measure of goodness of fit, and three ranking criteria based on Akaike’s Information Criterion corrected for
small samples (AICc), Bayesian Information Criterion (BIC), and cross-validation (C-V). The change in information criterion
relative to the top-ranked model (DAICc, DBIC), predicted R2 for the C-V method describing model rank, and model weights
(wAICc, wBIC, wC-V) are shown for the five most highly ranked models in each analysis. Highest relative strengths of evidence
according to each ranking method are shown in boldface. Negative %DE indicates that the model performs worse than the
reference model (exponential growth) for explaining variance in r.
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There was no evidence for a long-term temporal trend

in interval-specific (seasons combined or separated)

carrying capacity (Fig. 4a, b). Some of the temporal

variation was explained weakly by some of the

environmental variables investigated, with high tide

frequency having the relatively highest support (0.22,

0.21, and 0.31 wAICc, wBIC, and wC-V, respectively,

%DE¼ 16%), followed by rainfall and relative humidity

TABLE 3. Ranking of models used to correlate environmental variables (frequency of high tides [Tides], rainfall [Rain], and relative
humidity [RH]) with population rate of change (r).

Model %DE DAICc wAICc DBIC wBIC R2
pred wC-V

GL.1.2.Tides.Rain.RH 73.9 0.000 0.684 9.305 0.008 0.713 0.104
GL.1.2.Tides.Rain.RH.t 74.0 2.110 0.238 14.067 0.001 0.709 0.035
GL.1.2.Tides.Rain 73.6 4.959 0.057 0.000 0.866 0.721 0.642
GL.1.2.Tides.Rain.t 73.7 7.169 0.019 4.788 0.079 0.717 0.217
GL.1.2.Tides.RH.t 65.4 13.587 0.001 6.012 0.043 0.692 0.001
GL.1.2.Tides.RH 64.9 16.547 ,0.001 11.587 0.003 0.695 0.002
GL.1.2.Tides 54.8 25.457 ,0.001 15.231 ,0.001 0.673 ,0.001
GL.1.2.Rain 43.4 40.736 ,0.001 30.51 0.005 0.635 ,0.001
GL.1.2.RH 40.8 44.235 ,0.001 34.009 ,0.001 0.622 ,0.001
GL.1.2 31.4 52.454 ,0.001 36.819 ,0.001 0.597 ,0.001
GL.1 15.1 72.079 ,0.001 53.689 ,0.001 0.531 ,0.001

Notes: Ranking is based on the temporally lagged Gompertz-logistic (GL) model (rt ¼ rm[1 � log(Nt)/log(K )], where rm ¼
maximum r, Nt ¼ abundance at time t, and K ¼ carrying capacity). Also shown for each model is the percentage of deviance
explained (%DE) as a measure of goodness of fit, and three ranking criteria based on Akaike’s Information Criterion corrected for
small samples (AICc), Bayesian Information Criterion (BIC), and cross-validation (C-V). The change in information criterion
relative to the top-ranked model (DAICc, DBIC), predicted R2 for the C-V method describing model rank, and model weights
(wAICc, wBIC, wC-V) are shown. The highest-ranked model weights according to each information criterion ranking are shown in
boldface in columns wAICc, wBIC, and wC-V. Highest relative strengths of evidence according to each ranking method are shown
in boldface.

FIG. 3. Partial residual plots derived from the highest-ranked (according to Akaike’s Information Criterion corrected for small
sample sizes [AICc]) Gompertz-logistic model (see Table 3, Model 1: GL.1.2.Tides.Rain.RH) relating population rate of change (r)
to frequency of high tides and rainfall at time interval lags of 1 and 2. Dashed lines indicate 6SE of the mean.
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(Table 2). However, the consistent negative values for

R2
pred implies that the correlates of K were fitting noise

rather than any underlying signal (Turchin 2003a).

Modification of mosquito breeding habitat over the

course of the interval investigated was sporadic (Fig. 4),

with generally more engineering construction (new

drains, breeding areas filled) in the earlier years (Fig.

4c). Spraying management was also most intensive

between 1994 and 1998, followed by relatively lower

activity in later years (Fig. 4d). Management activities

such as habitat modification focus on reducing mosquito

abundance in the wet season, so we examined evidence

for their effects on seasonal carrying capacity. There was

no strong evidence for a relationship between popula-

tion control, drains concreted, and carrying capacity in

the wet season (Fig. 5).

DISCUSSION

Our study provides an empirical framework for

discerning the relative contributions of endogenous

and exogenous drivers of mosquito population dynam-

ics. We have demonstrated that it is imperative for both

types of drivers to be considered simultaneously when

predicting mosquito abundance and population growth

patterns. Previous studies of the population dynamics of

mosquitoes and other pest insects have focused mainly

on the correlation of environmental variables with

abundance (e.g., Shaman et al. 2002, Mondet et al.

2005, Diuk-Wasser et al. 2006), with more studies in the

last five years considering density-feedback mechanisms

(Gimnig et al. 2002, Kiflawi et al. 2003, Yang et al.

2008). Uniquely, this analysis of the A. vigilax dynamics

in northern Australia provided a direct confirmation of

the higher contribution of environmental drivers relative

to density feedback control, but ascertained that

endogenous control of mosquito populations represents

an important component of the explainable variation in

population growth rates. The multi-model inferential

support of the two-month density lag suggests that

mosquito population growth rate is driven, in part, by

elevated survival or fertility in generations following

periods of low larval density (Gimnig et al. 2002, Sibly et

al. 2005).

High tide frequency contributed the strongest explan-

atory power to A. vigilax population growth rate (Table

3, Fig. 3). Our two-interval lag model provided evidence

for a complex, but logical relationship between high tide

frequency and growth rate (a positive relationship at lag

1 and a negative relationship at lag 2). A. vigilax

primarily breeds in saline to brackish wetlands along the

coast, where females lay their eggs on moist mud and at

the base of plants in high marshlands dominated mainly

FIG. 4. Scatter plot depicting the relationship between log-transformed carrying capacity estimated from the model-averaged
Gompertz-logistic equations for the wet season between 1994 and 2005 and: (a) the number of days per year when larvicide
spraying occurred; (b) the extent of area sprayed with larvicide; (c) the length of drains concreted (built) to remove surface water;
and (d) the total area filled to reduce standing water accumulation. Error bars show 6SE.
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by brackish water reeds (Schoenoplectus spp.) or

mangroves (Avicennia spp. or Bruguiera spp.). As high

tides retreat, eggs are laid on moist substrata where they

mature quickly and become drought-resistant until the

onset of the next high-tide cycle or flood rain. This final

process can take weeks to months to re-flood these

surfaces and stimulate the eggs to hatch. After the

retreat of particularly high tides, substrata suitable for

egg laying and development become readily available, so

population size generally increases; however, the follow-

ing time interval generally results in a decrease in

population size. The diverging directions of the rela-

tionship between r and high-tide frequency at one- and

two-interval lags demonstrates the rapid response to

high densities typical of the Gompertz-logistic model

(i.e., rapid and strong negative density feedback as soon

as population size begins to increase).

Rainfall had, in contrast, a consistently negative

impact on population growth rate over both lag

intervals. The extreme seasonality of the north Austra-

lian monsoon (November–April) results in large

amounts of rainfall during a relatively short interval of

the year (Fig. 2c). This reduces the availability of

suitable habitats (moist substrata) required by ovipos-

iting adult female mosquitoes. Despite the drop of

reproduction rate in the previous time interval with

increased rainfall, the relatively consistent rainfall

patterns within a season in this region negate the

probability of a rebound of reproduction rate at the

next lag interval.

A fundamental aim in the management of disease-

carrying mosquito populations is to reduce overall

densities and the probability of large peaks in popula-

tion size, which enhance the risk of transmission. As

such, an underlying but untested assumption of the

engineering program has been that modifying drainage

patterns reduces the persistence of ephemeral breeding

pools. Our explicit modeling of the drivers of temporal

variation in environmental carrying capacity (K ) inves-

tigated this assumption directly. We found that tempo-

ral variation in mean A. vigilax K was weakly explained

by environmental variation. In other words, environ-

mental forcing does not appear to modify greatly the

degree to which the available habitats can support

mosquito populations; rather, stochastic changes modify

the rate at which the population increases or decreases

above and below carrying capacity. However, the degree

of fit for all K models investigated was low, likely due, in

part, to a relatively small sample size, restricting our

ability to identify clear trends.

Our qualitative comparison of the physical and

chemical management of mosquito habitats over the

FIG. 5. Temporal trends in the (a) log-transformed Aedes vigilax carrying capacity as estimated by the Gompertz-logistic (GL)
models in the wet and dry seasons; (b) combined seasonal log-transformed carrying capacity; (c) engineering management (filled
areas to reduce water accumulation and drains built to remove excess surface water); and (d) the spatial and temporal extent of
larvicide spraying in Darwin between 1994 and 2005. Temporal and seasonal trends were examined based on the following
equation: loge(K )¼ a0þ b 3 seasonþ et, where K is the Gompertz-logistic carrying capacity, b is the coefficient of season, and et
represents unexplained error. The coefficients of wet season (bwet), dry season (bdry), and combined-season (i.e., entire year; bcomb.)
temporal slopes were 0.004 (SE¼0.03),�0.002 (SE¼0.11), and�0.006 (SE¼0.06), respectively. In other words, long-term carrying
capacity fluctuated widely around a relatively stable mean. Error bars show 6SE.
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same time interval provides some additional insight. For

example, recent reductions in drain construction, filling

operations, and area sprayed may have contributed to

the higher maximum carrying capacities observed in the

latter portion of the K time series (Figs. 4 and 5). Indeed,

there is the tantalizing suggestion of a weak negative

relationship between carrying capacity and the number

of drains concreted and areas filled (Fig. 5), but more

data are required to verify this hypothesis. However, it

appears that the main effects of human modification to

mosquito breeding habitats (engineering works) and

larval survival (larvicide application) is the reduction in

rate of population increase rather than a reduction in the

environment’s capacity to support high mosquito

densities.

In addition to the contribution our results bring to the

long-term management of mosquito populations in

northern Australia with respect to physical and chemical

manipulation of breeding environments, this work offers

insight into the hypothesized effects of climate change

on mosquito abundance trends. There is a heteroge-

neous pattern of long-term (50þ years) rainfall change in

Australia and globally, with the tropical region of the

Northern Territory experiencing clear increases in total

annual rainfall since the 1940s (Australian Government

Bureau of Meteorology; available online).8 In the greater

Darwin region, 12-month July–June cumulative rainfall

increased at an average rate of 6.2 mm/yr (SE ¼ 1.24)

between 1943 and 2003 based on a least-squares linear

regression of five-year running mean (Fig. 6). Our

models predict that this trend would have an overall

effect of reducing the rebound potential of saline-

breeding species such as A. vigilax. The increased

availability of ephemeral freshwater breeding pools

implies that freshwater breeding species, such as Culex

anulirostris, may be exerting greater ecological domi-

nance (Yang et al. 2008). Climate change scenarios also

predict that rainfall intensity (frequency of heavier

rainfall events) is also likely to increase in areas with

increasing rainfall (Goswami et al. 2006).

Recent reports from the Intergovernmental Panel on

Climate Change show that the Earth’s temperature is

most likely to increase by 1.1–6.48C by 2100, depending

on future emission scenarios and climate sensitivity

(IPCC 2007). Over Australia in recent decades, observed

temperatures have increased in a manner consistent with

other areas around the world. The result is that global

average sea levels are predicted to rise by up to 59 cm

due to the effect of thermal expansion and loss of

mountain glaciers, and the possibility of a further,

possibly substantial contribution, from polar ice sheet

melting (IPCC 2007). These scenarios predict increases

in the frequency and intensity of high tide events (Scavia

et al. 2002). Our models clearly predict that increases in

the frequency of high tide events will provide more

suitable breeding habitat for A. vigilax and other saline

breeding species, which may, by proxy, increase the

frequency and transmission of mosquito-borne diseases

in northern Australia.

FIG. 6. The 12-month July–June cumulative rainfall between 1943 and 2003 in Darwin, Northern Territory, Australia. The
trend line is based on a least-squares linear regression of the five-year running mean (R2

adjust ¼ 0.2845).
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