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Abstract Mosquitoes are a major vector for tropical

diseases, so understanding aspects that modify their pop-

ulation dynamics is vital for their control and protecting

human health. Maximising the efficiency of control strat-

egies for reducing transmission risk requires as a first step

the understanding of the intrinsic population dynamics of

vectors. We fitted a set of density-dependent and density-

independent models to the long-term time series of six

tropical mosquito species from northern Australia. The

models’ strength of evidence was assessed using Akaike’s

Information Criterion (AICc), Bayesian Information

Criterion (BIC) and jack-knifed cross-validation (C-V).

Density dependence accounted for more than 99% of the

model weight in all model-selection methods, with the

Gompertz-logistic (Cushing model) being the best-

supported model for all mosquito species (negative density

feedback expressed even at low densities). The second-

most abundant species, Aedes vigilax (a saline breeder),

showed no spatial heterogeneity in its density-dependent

response, but the remaining five species had different

intrinsic growth rates across 11 study sites. Population

densities of saline species were high only during the late

dry to early wet season following the highest tides of the

month or early flood rains when swamps were mostly

saline, whereas those of freshwater species were highest

during the mid-wet and mid-dry seasons. These findings

demonstrate remarkably strong density dependence in

mosquito populations, but also suggest that environmental

drivers, such as rainfall and tides, are important in modi-

fying seasonal densities. Neglecting to account for strong

density feedback in tropical mosquito populations will

clearly result in less effective control.

Keywords Density dependence �Multi-model inference �
Pest control � Population dynamics � Regulation �
Tropical mosquito species

Introduction

Mosquito-borne pathogens causing malaria, dengue, yel-

low fever, filariasis and other well-known conditions, have

historically been a major cause of human disease and death

(Gubler 1991). However, effective targeted control pro-

grammes over the last 50 years have reduced the problem

in most regions of the world, except in parts of Africa

(Gubler 2001). These programmes emphasised the elimi-

nation of mosquito breeding sites through improved

environmental hygiene coupled with a limited use of

chemical insecticides. Yet, with the increasing rate of
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insecticide and drug resistance, changes to public health

policy, trends in human demography and society, and cli-

mate change, there is a concern that these diseases will

once again become a major issue for public health (World

Health Organization 1986; Gratz 1999; Sutherst 2004).

Recent work has focused on maximising the efficiency

of mosquito control strategies for reducing disease trans-

mission risk (Bergquist 2001) by abating the abundance of

pest species. Effective control of these insect populations

must take the fundamental first step of understanding their

intrinsic population dynamics, because these properties

will influence the rate of population recovery and spread

following control (Grech et al. 2007). Indeed, there is a

general consensus among ecologists that account must be

taken of intrinsic (endogenous) and extrinsic (exogenous)

population controls (Turchin 1995) when analysing abun-

dance time series, with increasing emphasis placed on

determining the degree of interaction between the two

(Sæther 1997; Wang et al. 2006; de Little et al. 2007).

Endogenous control operates typically via negative den-

sity-feedback mechanisms whereby vital rates (e.g.,

survival, fertility) or individual fitness are reduced as

population density increases (Turchin 2003). Exogenous

processes include stochastic environmental pressures and

human mosquito control activities that affect population

density but are not affected by it. Indeed, past mosquito

research has placed emphasis on determining the environ-

mental factors that correlate with mosquito abundance

(e.g., Russell and Whelan 1986; Su et al. 2003; Kunkel

et al. 2006), even though it is known that mosquito popu-

lations can also demonstrate strong intrinsic (density-

dependent) regulation (Bradshaw and Holzapfel 1989;

Leonard and Juliano 1995; Juliano 1998; Gimnig et al.

2002; Kiflawi et al. 2003).

Various population models have been applied to a wide

range of species to explore the extent to which density

regulation drives fluctuations in abundance time series

(e.g., Hanski 1990; Woiwod and Hanski 1992; Gimnig

et al. 2002; Yamamura et al. 2006). However, most pre-

vious studies have relied on the classic framework of

Neyman–Pearson hypothesis testing (NPHT), with the null

hypothesis (density-independent model) rejected if the

probability is less than the Type I error (usually set arbi-

trarily at 0.05). It can be difficult to use NPHT to provide

answers to complex ecological problems (Burnham and

Anderson 2002, 2004; Elliott and Brook 2007; Lukacs

et al. 2007) because: (1) a P value is not the probability that

the null hypothesis is true—it instead represents the prob-

ability that the observed effect, or a more extreme effect,

resulted from the null model; (2) large P values are not

evidence that the null hypothesis is true—they are con-

founded by sample size and effect size; (3) small P values

do not indicate goodness-of-fit; (4) a priori power tests are

difficult to perform; and (5) alternative hypotheses are

encapsulated by a deviation from the null (i.e., only one

alternative hypothesis is considered, but not modelled)

(McCarthy 2007).

Alternative options have used either Bayesian Infor-

mation Criterion (BIC) or jack-knifed cross-validation

(CV) best-model selection. Zeng et al. (1998) used BIC to

select a best model for 31 insect time series. Twenty-three

of their 31 cases showed evidence for density regulation, of

which 19 included complex density-dependent dynamics.

Turchin (2003) used C-V methods to determine the com-

plexity of phenomenological time-series models in the

absence of a priori information. He defined the optimal

process order (or dimension) of models first and then chose

the polynomial degree best describing the realised rela-

tionship between population growth and abundance. A

more comprehensive approach exploiting the full power of

multi-model inference (MMI) has recently been adopted.

Models are scaled according to information-theoretic or

Bayesian approximation estimates of model parsimony,

e.g. Akaike’s and Bayesian Information Criteria (Akaike

1973; Burnham and Anderson 2002; Link and Barker

2006) to incorporate model selection uncertainty into the

determination of density regulation’s relative contribution

to population processes (Bradshaw et al. 2006; Brook and

Bradshaw 2006; Chamaillé-Jammes et al. 2008). Brook and

Bradshaw (2006) recently evaluated the relative strength of

evidence of different dynamical models (density-dependent

and density-independent) in long-term abundance time

series of 1,198 species—with the conclusion that most

species demonstrate some form of density regulation.

Several important human diseases are currently or

potentially transmitted by the mosquito species present in

various areas of Australia, yet little work has been done on

mosquito population dynamics in Australia. According to

the Australian National Arbovirus and Malaria Advisory

Committee’s annual report for 2004–2005, Ross River

virus disease (RRV) (45%) and Barmah Forest virus dis-

ease (BFV) (30%) are the most commonly reported

mosquito-borne diseases in Australia. In addition, dengue

virus infection (DENV), Kunjin virus infection (KUNV)

and Murray Valley encephalitis virus infection (MVEV)

have been detected (Mackenzie et al. 1993; Burrow et al.

1998). The highest national rates of both RRV and BFV

occur in the tropical north (Liu et al. 2005), and there are

several Anopheles species that pose a risk as potential

malaria vectors should the disease be introduced through

infected human travellers. To tackle the increasing threat of

mosquito-borne diseases in this region and to provide

general control of human pest species, the Northern Ter-

ritory Government launched a mosquito monitoring and

control programme in the 1980s to reduce the short- and

long-term densities of the major mosquito species around
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urban areas. Of the 98 mosquito species known to occur in

the Northern Territory, six are relatively common human

pests: Aedes vigilax, Culex annulirostris, Anopheles ban-

croftii, Coquillettidia xanthogaster, Culex sitiens and

Mansonia uniformis. The two most common species, Ae.

vigilax and Cx. annulirostris, are the most important vec-

tors of RRV and BFV in the Northern Territory (Whelan

et al. 1997), with Cx. sitiens representing another possible

RRV vector. Aedes vigilax is a major coastal pest species

breeding principally in saline wetlands, whereas Cx. an-

nulirostris is a freshwater species found along coastal and

inland areas. Anopheles bancroftii represents a potential

malaria vector.

Using a long-term (15-year) weekly monitoring dataset

for these six species, we examined the phenomenological

evidence for and strength of density regulation to deter-

mine to what extent intrinsic dynamics dictate the rate of

change in mosquito abundance. We use a modified version

of the methods adopted by Brook and Bradshaw (2006) to

(1) examine the multi-model inferential evidence for den-

sity regulation in monthly time series data collected from

11 CO2-trap sites within the Greater Darwin region

(Fig. 1), (2) describe the form and strength of the endog-

enous control mechanism for each species, and (3) evaluate

the evidence for spatial variation the feedback mechanism

among trap sites. Our objectives are to provide land-use

managers with evidence-based advice for optimal mosquito

control strategies and to develop insight into the general

mechanisms of endogenous control of disease-carrying

insects worldwide. While we acknowledge that environ-

mental determinants of mosquito abundance are an

essential component in predictive models, our main aim

was to quantify the relative strength and form of negative

density feedback in tropical Australian mosquitoes in

general, rather than predict abundance trends per se.

Materials and methods

Dataset

Mosquito population density data were collected weekly

by the Medical Entomology Branch of the Northern

Territory Department of Health and Community Services

(DHCS) at 11 locations (Fig. 1) in Darwin, Australia for

routine surveillance. The study region is situated between

12�22–250S latitude and 130�51–560E longitude in

Greater Darwin near various surrounding swamps (Rus-

sell and Whelan 1986). CO2-baited mosquito traps (Rohe

and Fall 1979) were checked weekly at each location.

CO2-baited light traps offer many advantages over other

capture techniques (e.g., human bait, aspirators,

BG-Sentinels; Williams et al. 2006) because they are

generally less labour-intensive, provide all-night collec-

tion, offer no bias based on individual attractiveness or

skill of the collector, target nulliparous females, and are

effective for many generalist-feeding Australian species

such as Ae. vigilax and Cx. annulirostris (Russell and

Whelan 1986; Van Essen et al. 1994; Miller et al. 2005;

Williams et al. 2006). Indeed, CO2-baited mosquito traps

are effective for registering relative adult abundance and

population rates of change (Whelan et al. 2005). For this

particular study, we only used the data on female pop-

ulation density due to their blood-feeding behaviour and

their importance for disease transmission.

Our initial analysis used simple phenomenological

models that avoided considering age structure and over-

lapping generations (Turchin 2003). Under tropical

condition in Darwin, an average female mosquito normally

lives for 1–2 weeks (Russell 1987). Larval development of

her offspring generally takes 4–10 days with the shorter

period evident in Aedes species during summer. The final

larval stage develops into an active comma-shaped pupa

from which the adult mosquito emerges about 2 days later.

Fig. 1 Map of the Greater Darwin region, Northern Territory,

Australia, showing the position of the 11 mosquito trapping sites
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It takes around 2 weeks to complete a single generation in

the mosquito life cycle. To avoid potential problems

associated with overlapping generations in our dataset (e.g.

Lande et al. 2002), fortnightly and monthly data of Ae.

vigilax and Cx. annulirostris were tested to evaluate the

sensitivity of the models assessed to variation in the

duration of the transition interval chosen (2 or 4 weeks).

We found no evidence that model ranking or strength of

effect differed substantially when using either of the two

intervals (results not shown), so we present all model

results based on monthly density data for all species. The

completed dataset spans 180 months (15 years), ranging

from January 1991 to December 2005 (Fig. 2) at 11

locations.

Time series analysis

All analyses were done in the R Package V2.4.0 (R

Development Core Team 2004). We used an autocorrela-

tion function (ACF) to determine if there were lagged

density responses, and the partial autocorrelation function

(PACF) to determine the strength of relationships, i.e., to

detect dependencies between sequential densities after

removing the autocorrelation effect (Turchin 2003).

Population dynamics models

Although there are many potential mathematical simplifi-

cations of complex population dynamics in time series

(e.g., Hall and Cummins 2005; Yamamura et al. 2006), we

used an a priori model-building strategy to arrive at a set of

five population dynamics models commonly used to

describe phenomenological time series data (Turchin 2003;

Brook and Bradshaw 2006) and applied these to our

mosquito density datasets. All five models can be derived

from the generalised h-Ricker population growth model

according to the transformation of rm and h:

loge

Ntþ1

Nt

� �
¼ r¼ rm 1� Nt

K

� �h
" #

þ et;et � Normalð0;r2Þ

ð1Þ

where Nt denotes mosquito population size at time t,

r = realised population growth rate, rm = maximal

intrinsic r, K = carrying capacity, h controls the shape of

the relationship between r and Nt, and et represents the

environmental variability and other unexplained factors.

Due to insufficient information, we could not determine the

relative contribution of measurement versus process error

Fig. 2 Relative abundance

monthly time series for the six

most common mosquito species

caught in Darwin over all years

examined (1991–2005).

Maximum values are set to 1.0
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(Freckleton et al. 2006; see also ‘‘Discussion’’), so only

total error (et) was considered.

Density-independent models assume constant growth

without the influence of density. Two density-independent

models were applied: random walk with rm = 0 (RW,

Eq. 2); and exponential growth with K ? ? (EX, Eq. 3).

In contrast, density-dependent models consider r as related

linearly or non-linearly to Nt: a stochastic form of the

Ricker-logistic model with h = 1 (RL, Eq. 4); a stochastic

Gompertz-logistic (Cushing) model with logarithm-trans-

formed Nt and K, with h = 1 (GL, Eq. 5); and a

generalised h-Ricker growth model (TR, Eq. 1).

r ¼ 0þ et; et � Normalð0; r2Þ ð2Þ

r ¼ rm þ et; et � Normalð0; r2Þ ð3Þ

r ¼ rm 1� Nt

K

� �� �
þ et; et � Normalð0; r2Þ ð4Þ

r ¼ rm 1� logeðNtÞ
logeðKÞ

� �� �
þ et; et � Normalð0; r2Þ ð5Þ

All models except TR were fitted on the basis of maxi-

mum-likelihood using linear regression. For TR, we

applied non-linear regression based on both Nelder–Mead

and quasi-Newton optimisation (Dennis and Taper 1994)

initiated with parameter estimates of rm, K and h derived

from a simulation routine analogous to the approach

employed by Sibly et al. (2005). We first set a vector

ranging from near 0 to twice the maximum observed r or N

(for the rm and K vectors, respectively) and near 0–10 for

the h vector. Each vector had 50 intervals between mini-

mum and maximum values. For each of the 50 9 50 9 50

(125,000) combinations of rm, K and h, we calculated

predicted r using Eq. 1 and the maximum log-likelihood,

and stored the successively larger values of the latter. The

combination of rm, K and h producing the maximum log-

likelihood were subsequently used as the starting parame-

ters for the Nelder–Mead and quasi-Newton optimization

(implemented using the optim function in the R Package;

R Development Core Team 2004). Both optimisation

algorithms produced the same results.

Model comparison

To rank and weight the five models in the a priori set

(i = 1–5), three separate methods were used because each

can provide slightly different rankings based on the size of

the dataset and presence/absence of tapering effects

(Burnham and Anderson 2004; Link and Barker 2006): (1)

Akaike’s Information Criterion (AICc) corrected for small

sample sizes (Akaike 1973; Burnham and Anderson 2002),

and (2) the Bayesian Information Criteria (BIC) (Link and

Barker 2006), and jack-knifed cross-validation (C-V)

(Turchin 2003). For AICc and BIC, we calculated the dif-

ference between the model’s criterion and the top-ranked

model (Di) and the relative model weights (wi) (Link and

Barker 2006). Thus, the strength of evidence (wAICc,

wBIC, wC-V) for any particular model varies from 0 (no

support) to 1 (complete support) relative to the entire

model set. AICc weighting can favour more complex

models (with many tapering effects) when sample sizes are

large (Link and Barker 2006). Therefore, BIC is generally

considered a better procedure for ranking models when

sample sizes are large and the goal is to determine the

principal drivers of complex relationships (Link and Barker

2006). C-V is a computationally expensive analogue of

AIC and gives a direct indication of whether mostly

‘‘noise’’ or ‘‘signal’’ is being captured by the goodness-of-

fit metric (Rpredicted
2). AICc and C-V therefore provide

information on the existence of tapering effects necessary

to maximise predictive capacity (Link and Barker 2006).

Given the large sample size in this study (n = 180) and our

focus on identifying the source of variation in r, we con-

sidered BIC weighting primarily to determine mosquito

population dynamical model ranking.

Spatial heterogeneity and temporal trends

To test for spatial heterogeneity in the type of density-

dependent response among trap sites, we fitted a series of

linear mixed-effects models. This was based on the top-

ranked model from the previous procedure (GL), elabo-

rated to include variation in the intercept and slope terms to

represent potentially different patterns among locations.

The model variants were: (1) intercept only as a random

effect; (2) slope only set as a random effect; (3) intercept

and slope as independent random effects; and (4) a GL

model without spatial random effects. We employed the

same MMI-ranking procedures described above to deter-

mine model support.

We tested for temporal trends (i.e., declining or

increasing populations on average, despite any oscillatory

behaviour). This model set incorporated a time sequence (t)

into the GL model, as well as a t2 term to account for

possible non-linear (quadratic) trends. Seasonality was

investigated by coding months as ‘‘wet’’ (November–April)

or ‘‘dry’’ (May–October) to mimic the summer monsoonal

pattern of rainfall typical of the Australian wet–dry tropics

(Meehl et al. 2006). As before, the full MMI procedure was

applied.

Results

The six mosquito species showed different seasonal chan-

ges in abundance over the 15-year monitoring period
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(Figs. 2, 3, 4). Saline-breeding species (Ae. vigilax and Cx.

sitiens) have relatively lower densities in the dry season,

but most freshwater species have one or two peaks

throughout the year. Since the dominant species are Ae.

vigilax and Cx. annulirostris (Fig. 3), we have taken them

as examples to summarise the major differences between

saline- and freshwater-breeding species. Densities of Ae.

vigilax decrease from a wet season peak between

November and January, and then rapidly decline to a dry

season low in July (Fig. 4a), whereas Cx. annulirostris

density increases rapidly with the onset of rains in the early

part of the wet season and maintains this high density

throughout much of the dry season, before collapsing again

from August to November (Fig. 4d). For Ae. vigilax, the

wet and dry season �r were -0.439 and 0.466, respectively

(if season is ignored, �r ¼ 0:010), while those of Cx. an-

nulirostris were 0.369 and -0.345, respectively (mean

overall �r ¼ 0:011). Thus, Cx. annulirostris appears to

depend strongly on the rain received during the wet season,

with a greater capacity for population increase in the wet

season and rapid population crashes during the dry season.

The ACF also depicts marked cycles in each of these

dominant species’ abundance time series. The annual

(12-month) cycle is clearly dominant from the ACF, and

there is a strong positive correlation of mosquito popula-

tion density between successive months (lag = 1) (Fig. 5a,

c). We also detected a strong negative correlation between

density 6 months apart (lag = 6) for Ae. vigilax (Fig. 5a),

and a 4-month lag for Cx. annulirostris (Fig. 5c). The

partial autocorrelation function showed a strong negative

feedback at lags of 2 months for both species (Fig. 5b, d).

When pooled over all trapping sites, the combined MMI

evidence for density dependence was [99% for all mos-

quito species, based on the sum of the wAICc, wBIC or wC-

V for the RL, GL and TR models (Table 1; full model

rankings shown for Ae. vigilax and Cx. annulirostris; for

sub-dominant species only the best-fitting model results are

shown). All metrics indicated the greatest and over-

whelming support for the Gompertz-logistic (GL, or

Cushing) model. Indeed, wBIC for the GL model was

[86% of the total weight. BIC is generally considered

more appropriate for detecting main effects with large

sample sizes, because under such circumstances AICc tends

to favour more complex models (Link and Barker 2006).

The percentage deviance explained (% DE) in r by density

was 26.90% for Cx. annulirostris, and 12.76% for Ae.

vigilax, suggesting a stronger density-feedback mechanism

in the former species. We tested this hypothesis directly by

comparing the slopes of the r versus loge (N) (GL) rela-

tionship derived from the standardised time series, where

maximum density for each species was set to 1 and all

other values rescaled. The slope of the relationship for Ae.

vigilax was -1.608 ðr̂ ¼ 0:904Þ; and -2.564 for Cx. an-

nulirostris ðr̂ ¼ 0:618Þ; reinforcing the idea of a stronger

negative feedback mechanism in Cx. annulirostris (Fig. 6).

The degree of spatial heterogeneity in the strength of

density feedback was different for each species (Table 2; full

model rankings shown for Ae. vigilax and Cx. annulirostris;

for sub-dominant species only the best-fitting model results

are shown). There was no clear evidence for spatial variation

in Ae. vigilax (wAICc = 0.596 and wBIC = 0.684 for the no

random-effect model; Table 2). In contrast, there was little

evidence to support the aspatial model in the remaining five

species. For instance, Cx. annulirostris had the strongest

evidence for an intercept-only spatial effect

(wAICc = 0.622 and wBIC = 0.998; Table 2). Although

there was some suggestion of a small long-term increase in

both populations (�r [ 0; see above), this was not sufficiently

strong to support a time effect in the models considered

(Table 3). Except for Cx. sitiens, the remaining species

demonstrated strong support for the GL model including

season (wet/dry), and weak evidence for an effect of time

(Table 3). The best-fitting models and their estimated coef-

ficients (with SE in brackets) for Ae. vigilax and Cx.

anulirostris were: r̂vigilax ¼ 0:918ð0:174Þ � 0:189ð0:057Þ
loge Nt � 0:776ð0:157Þ � season and r̂annulirostris ¼ 1:263

ð0:268Þ � 0:394ð0:062Þ loge Nt � 0:691ð0:123Þ � season:

Discussion

Multi-model inference demonstrates clearly that mosquito

populations in tropical north Australia exhibit strong

endogenous control, explaining between approximately 10–

20% of the variation in population rate of change among the

species examined. This is an important result for manage-

ment of these pests because it indicates that control measures
Fig. 3 Relative proportional abundance of the six most common

mosquito species from 1991–2005
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failing to account for intrinsic dynamics will likely overes-

timate the medium- to long-term effectiveness of density

suppression programmes. Our results, derived from a unique

long-term database covering more than 180 generations of

all mosquito species examined, support the view that the

population dynamics of most species are influenced mea-

surably by density-dependent processes (Zeng et al. 1998;

Brook and Bradshaw 2006; Yamamura et al. 2006).

Consistent with previous findings that organisms with

high turn-over rates such as insects generally demonstrate

strong evidence for a Gompertz-logistic-like negative

feedback (Sibly et al. 2005; Brook and Bradshaw 2006;

Yamamura et al. 2006), the GL (Cushing) model was

strongly supported in all six mosquito species we exam-

ined. The GL model expresses rates of population growth

as a negative log–linear relationship with density, with high

Fig. 4 Box and whisker plots

showing the monthly variation

in population density of six

mosquito species over all years

examined (1991–2005).

Monthly values show the

smallest and largest observation,

lower and upper quartiles and

median per month
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r at low densities which declines rapidly as population size

increases and then tapers to an asymptote (Turchin 2003).

This functional form evokes a density-feedback mecha-

nism that promotes over-compensatory population

responses, such as rapid peaks and crashes after successive

generations (Fig. 3). Moreover, in all cases, the more

highly parameterised h-Ricker model with h of 0.121 and

0.005 for Ae. vigilax and Cx. annulirostris, respectively,

had support (Table 1). A value of h\ 1 also results in a

concave function form of the GL-type (Sibly et al. 2005;

Brook and Bradshaw 2006).

We note that some caution should be exercised in

interpreting the magnitude of the concave function esti-

mated by the GL model. We were unable to account

explicitly for measurement error and assumed that the

relative-abundance estimates of N did not overly bias r

among sample sessions. Substantial measurement error can

not only lead to an over-estimate of the magnitude of the

negative feedback mechanism estimated from phenome-

nological time series, but can also result in an under-

estimation of h such that concavity in the r versus N

relationship is exaggerated (Freckleton et al. 2006). Future

work should be directed towards deriving estimates of

measurement error in the sampling technique. This will

permit the use of Bayesian hierarchical approaches, which

can easily and logically incorporate the uncertainties

embedded in the models. Gibbs sampling, a Bayesian

method which uses Markov chain Monte Carlo simulation,

can simulate measurement error and model its effects on

the interpretation of dynamical model estimates (Spiegel-

halter et al. 2002).

Competitive interactions between aquatic larvae are

considered to be some of the most important mechanisms

responsible for endogenous control in mosquitoes. Adult

female body size (and hence future fitness) is highly sen-

sitive to larval density, and female larvae suffer greater

mortality rates in higher density populations (Juliano 1998;

Agnew et al. 2000; Gimnig et al. 2002; Shone et al. 2006).

The 2-month density lag indicated by the PACF plots

(Fig. 5c, d) may partially result from reduced survival or

fertility in generations arising from high larval densities.

Density regulation may also be driven by predator effects

(i.e., predatory fish, amphibians or insects feeding on lar-

vae) and physical parameters (speed of drying of pools;

habitat quality). However, predator densities or transient

pooling are unmeasured in this system so we cannot judge

the potential mechanism of predators in eliciting density

feedback. Nonetheless, there is good evidence that female

Culiseta longiareolata mosquitoes avoid ovipositing in

pools containing high numbers of Notonecta maculata

Fig. 5 Autocorrelation

functions (ACF) for (a) Ae.
vigilax and (c) Cx. annulirostris,

and partial autocorrelation

functions (PACF) for (b) Ae.
vigilax and (d) Cx.
annulirostris. Time step lags are

given in ‘‘month’’ units
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larval predators, and they are more likely to choose pools

with fewer conspecifics larvae present (Kiflawi et al. 2003;

see also Reiskind and Wilson 2004). Female Aedes aus-

tralis mosquitoes also oviposit less in pools inhabited by

predatory Limnodynastes peronii tadpoles (Mokany and

Shine 2003). However, the influence of larval density on

mosquito oviposition behaviour can be considerably more

complex. Edgerly et al. (1998) found a positive relationship

between Aedes triseriatus larval density and female ovi-

position preference, and Mokany and Shine (2003) found a

similar relationship for Culex quinquefasciatus and Ae.

australis, suggesting that high larval density may instead

act as a cue for habitat stability and quality. Likewise,

Grech et al. (2007) found that the Anopheles stephensi

daughters of parents reared as larvae in low food conditions

produced larger egg clutches than those reared in high-food

conditions.

The strength of the feedback itself differed markedly

between species, with Cx. annulirostris being more sensi-

tive to variation in density than other species at low

population size (Fig. 6). This suggests that a common

limiting mechanism like fish, amphibian or insect predation

is unlikely unless there is strong prey species selection by

certain predators. Other possible density feedback mecha-

nisms including adult competition for blood meals (cf. Saul

2003), although data describing intra- or inter-specific

competition in this mosquito species assemblage are cur-

rently unavailable. Furthermore, control of Cx.

annulirostris may be more difficult than that of other

species because Cx. annulirostris has a greater rebound

potential following reductions due to insecticide spraying

operations. Our findings suggest that Cx. annulirostris

control must therefore be a continuous and sustained

activity to reduce population growth that tends constantly

toward exponential growth at low densities.

Of course, mosquito population size is not solely a

product of density regulation. Exogenous factors such as

water availability, wind speed, temperature and other

environmental attributes like vegetation type also influence

relative abundance (Shone et al. 2006), even though the

exogenous component of population change is often treated

as an unspecified stochastic process (Sæther et al. 2000;

Turchin 2003). Non-random exogenous effects include

trends and periodic changes in the environment such as

seasonality, and if ignored, may lead to the overestimation

of risk factors (Sun et al. 2000). Our analysis of spatial

heterogeneity among trapping sites using a random-effects

model revealed an important aspect of mosquito population

dynamics that can be used to streamline monitoring and

control operations. Ae. vigilax, a saltwater species, showed

the same density-dependent patterns regardless of trap site,

whereas other species were highly spatially structured

(Table 2). The higher dispersal capacity of Ae. vigilax

(Gilles et al. 2004) means that ultimately, some combina-

tion of mechanistic models that incorporate dispersal

probability among sub-populations will be required to

examine the potential attenuation of density-dependent

signals arising from mobility (Wang et al. 2006; Bradshaw

2008).

The majority of current and historical monitoring sites

around Darwin are located along coastal swamp regions

and seawater drainage wetlands (reticulation), such that

during the wet season (November–April), large amounts of

rain and surface runoff dilute salt concentrations in some

drainages and so produce natural freshwater wetlands

(swamps and marshes). These more temporally and spa-

tially ephemeral freshwater breeding sites add a degree of

spatial variability into the dynamics of the freshwater-

obligate species, so monitoring must be designed to take

this variation into account. The spatial consistency of Ae.

Table 1 Strength of evidence for five alternative models of mosquito

population dynamics, as judged by Akaike’s Information Criterion

corrected for small sample sizes (AICc), Bayesian Information

Criterion (BIC) and cross-validation (C-V)

% DE DAICc wAICc DBIC wBIC R2
pred wC-V

Ae. vigilax

GL 12.76 0.00 0.702 0.00 0.861 0.526 0.589

TR 12.89 1.94 0.266 4.70 0.082 0.523 0.374

RL 8.26 6.22 0.032 6.22 0.038 0.506 0.037

RW -0.01 13.49 0.001 7.87 0.017 0.474 0.001

EX 0.00 15.54 \0.001 12.75 0.001 0.466 \0.001

Cx. annulirostris

GL 26.90 0.00 0.746 0.00 0.920 0.344 0.513

TR 26.86 2.17 0.252 4.94 0.078 0.344 0.486

RL 16.00 12.09 0.002 12.09 0.002 0.284 0.002

RW -0.02 25.70 \0.001 20.05 \0.001 0.211 \0.001

EX 0.00 27.73 \0.001 24.93 \0.001 0.199 \0.001

An. bancroftii

GL 9.71 0.00 0.892 0.00 0.993 0.684 0.700

Cq. xanthogaster

GL 11.48 0.00 0.749 0.00 0.980 0.519 0.647

Cx. sitiens

GL 22.45 0.00 0.779 0.00 0.983 0.328 0.903

Ma. uniformis

GL 21.44 0.00 0.818 0.00 0.987 0.470 0.981

The models are a random walk (RW), exponential growth (EX),

Ricker-logistic (RL), Gompertz-logistic (GL) and h-Ricker (TR).

Highest-ranked models are shown in boldface. Also shown is the

percent deviance explained (% DE), change in information criterion

relative to the top-ranked model (DAICc, DBIC), predicted R2 for the

C-V and model weights (wAICc, wBIC, wC-V). All five dynamical

model results are shown for the two dominant species (Ae. vigilax and

Cx. annulirostris; only the top-ranked model is shown for the

remaining sub-dominant species)
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vigilax’s dynamics is probably due, in part, to its long flight

ability (Gilles et al. 2004). Relatively high populations

have been recorded at Katherine (250 km southeast of

Darwin) in the early wet season, which is up to at least

100 km from the nearest tidally influenced breeding site

(Medical Entomology Branch Annual Report; DHCS,

unpublished data). Culex sitiens, a localised coastal pest,

breeds in brackish coastal pools or swamps and has a more

spatially clustered distribution. We found that this species’

population does not demonstrate precipitous declines to the

same extent as the freshwater species in September–

November because the former can use the increasingly

salty water to breed during this period.

The simple addition of the season term to the GL model

increased the amount of variation explained for all species.

For instance, the variance described for Cx. annulirostris

increased from 26.97 to 53.90% after introducing season-

ality. Therefore, over half of the variation in population

growth rate of Cx. annulirostris can be explained by a

simple model incorporating direct density dependence and

seasonality (the latter incorporating environmental

determinants of population growth such as changing tem-

perature, humidity and water availability/salinity). The

different seasonal responses of different species are clearly

an important consideration for control operations. For

example, with the onset of high rainfall in January, popu-

lations of saltwater-breeding species such as Ae. vigilax

begin to decline, whereas those of freshwater species are

expected to have one or two peaks in mid-dry season

(May–June) and early wet season (January). This rein-

forces the notion that the latter species require a greater

degree of sustained control throughout the year.

In considering model parsimony, we only used a two-

level seasonal factor in our models. We argue that this

factor appropriately reflects the monsoonal variation that

characterises northern Australia’s tropical regions without

attempting to capture subtle month-to-month variation that

would require estimating many more parameters. Further,

our emphasis was to quantify the relative strength and form

of negative density feedback in tropical Australian mos-

quitoes in general rather than predict abundance trends;

therefore, we specifically avoided accounting for the

Fig. 6 Relationship between

population growth rate (r) and

standardised log-transformed

population density for all six-

mosquito species examined
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complex harmonic periodicity in our analyses. The AR-

IMA method developed by Box et al. (1994) may provide

better predictive power in this regard, but we specifically

avoided adopting this approach to maximise model parsi-

mony (Burnham and Anderson 2002). Other methods

include the unit root test (Hall and Cummins 2005),

although the approach is not yet widely used by ecologists.

A modelling approach linking correlative environmental

data to endogenous dynamics would be required to tease

apart the drivers of exogenous variation in these mosquito

species. That said, our endogenous-focused approach has

revealed that some of the most basic considerations of

density regulation can provide useful guidance regarding

the timing and spatial configuration of effective control.

Future modelling must also consider the periodicity and

potential influence of environmental change (e.g., global

warming) on long-term predictions of control effectiveness

via more precise predictions of mosquito abundance.

Control models that attempt to account for the potential

impacts of environmental change will assist governments

in taking prompt or pre-emptive action by establishing

early-warning systems for disease outbreaks in human

populations.
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Table 2 Spatial heterogeneity analysis using multi-model

inference

DAICc wAICc DBIC wBIC

Ae. vigilax

Spatial random effects

Intercept only 1.59 0.269 1.8 0.278

Slope only 5.59 0.036 5.8 0.038

Intercept and slope 3.59 0.099 15.8 0.000

No random effects

No spatial heterogeneity 0.00 0.596 0.0 0.684

Cx. annulirostris

Spatial random effects

Intercept only 0 0.622 0 0.998

Slope only 13 0.001 13 0.001

Intercept and slope 1 0.377 14 0.001

No random effects

No spatial heterogeneity 94.47 0.000 94.32 0.000

An. bancroftii

Spatial random effects

Intercept and slope 0 0.960 0 0.629

Cq. xanthogaster

Spatial random effects

Intercept only 4 0.107 0 0.422

Cx. sitiens

Spatial random effects

Intercept only 0 0.622 0 0.953

Ma. uniformis

Spatial random effects

Intercept and slope 0 0.971 0 0.736

Three spatial models and one aspatial model are contrasted for each

species (see ‘‘Methods’’)

Highest-ranked models for each species according to Akaike’s

Information Criterion corrected for small sample sizes (AICc) and

Bayesian information Criterion (BIC) are shown. All five dynamical

model results are shown for the two dominant species (Ae. vigilax and

Cx. annulirostris; only the top-ranked model is shown for the

remaining sub-dominant species)

Table 3 Gompertz-logistic models incorporating time (t), the square

of time (t2) and season (wet/dry), to test the hypotheses for linear and

non-linear temporal trends and different regulation patterns between

seasons

% DE DAICc wAICc DBIC wBIC Rpred
2 wC-V

Cx. annulirostris

GL.S 53.90 0.00 0.539 0.00 0.893 0.468 0.525

GL.T.S.TS 56.16 1.84 0.215 7.28 0.023 0.461 0.216

GL.T.S 53.90 2.16 0.184 4.89 0.077 0.460 0.186

GL.T.T2.S 53.93 4.31 0.062 9.76 0.007 0.452 0.073

GL 26.90 27.80 \0.001 25.03 \0.001 0.344 \0.001

GL.T 26.94 29.88 0.001 29.88 \0.001 0.334 \0.001

GL.T.T2 26.97 32.02 \0.001 34.76 \0.001 0.323 \0.001

Ae. vigilax

GL.S 29.28 0.00 0.552 0.00 0.888 0.595 0.577

GL.T.S 29.45 1.93 0.211 4.66 0.087 0.589 0.210

GL.T.T2.S 30.31 2.94 0.127 8.36 0.014 0.585 0.112

GL.T.S.TS 30.10 3.23 0.110 8.65 0.012 0.584 0.101
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Cq. xanthogaster

GL.S 38.43 0.00 0.611 0.00 0.920 0.567 0.517

Cx. sitiens

GL 39.53 0.00 0.315 0.00 0.769 0.235 0.319

Ma. uniformis

GL.S 75.80 0.00 0.561 0.00 0.912 0.529 0.475

Model types include: basic Gompertz-logistic (GL), seasonal GL

(GL.S), time–series sequence GL (GL.T), quadratic time–series

sequence GL (GL.T.T2), season–time series GL (GL.T.S), season–

quadratic time-series GL (GL.T.T2.S) and season–time series inter-

action GL (GL.T.S.TS). Highest-ranked models are shown in

boldface. Also shown is the per cent deviance explained (% DE),

change in information criterion relative to the top-ranked model

(DAICc, DBIC), predicted R2 for the C-V and model weights (wAICc,

wBIC, wC-V). All five dynamical model results are shown for the two

dominant species (Ae. vigilax and Cx. annulirostris; only the top-

ranked model is shown for the remaining sub-dominant species)
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