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Abstract

The transmission of mosquito-borne diseases is strongly linked to the abundance of the host vector. Identifying the
environmental and biological precursors which herald the onset of peaks in mosquito abundance would give health and
land-use managers the capacity to predict the timing and distribution of the most efficient and cost-effective mosquito
control. We analysed a 15-year time series of monthly abundance of Aedes vigilax, a tropical mosquito species from northern
Australia, to determine periodicity and drivers of population peaks (high-density outbreaks). Two sets of density-dependent
models were used to examine the correlation between mosquito abundance peaks and the environmental drivers of peaks
or troughs (low-density periods). The seasonal peaks of reproduction (r) and abundance (Npeak) occur at the beginning of
September and early November, respectively. The combination of low mosquito abundance and a low frequency of a high
tide exceeding 7 m in the previous low-abundance (trough) period were the most parsimonious predictors of a peak’s
magnitude, with this model explaining over 50% of the deviance in Npeak. Model weights, estimated using AICc, were also
relatively high for those including monthly maximum tide height, monthly accumulated tide height or total rainfall per
month in the trough, with high values in the trough correlating negatively with the onset of a high-abundance peak. These
findings illustrate that basic environmental monitoring data can be coupled with relatively simple density feedback models
to predict the timing and magnitude of mosquito abundance peaks. Decision-makers can use these methods to determine
optimal levels of control (i.e., least-cost measures yielding the largest decline in mosquito abundance) and so reduce the risk
of disease outbreaks in human populations.
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Introduction

Only a few of the approximately 3000 mosquito species known

worldwide feed on human blood [1]. Unfortunately, these human

pest species are responsible for the deaths of millions of people

each year by transmitting some of the deadliest-known diseases,

such as malaria, yellow fever, dengue, and Rift Valley fever [2].

Different mosquito species transmit different diseases; for example,

Aedes aegypti is the primary vector of the arboviruses dengue and

yellow fevers [3,4]; several Anopheles species carry different forms of

the malaria protozoan parasite [5], and Aedes vigilax transmits Ross

River and Barmah Forest virus [6,7].

The transmission of mosquito-borne diseases is strongly linked

to the abundance of the host vector [6,8], making rigorous

surveillance and control programs an essential component of

disease suppression. To develop effective control measures, most

studies have focused on describing and quantifying habitat

associations and the particular spatio-temporal distributions of

vector species. The fluctuations in mosquito abundance over time

are driven both by endogenous (negative density feedback) and

exogenous (stochastic environmental variation) components

[9,10]. Indeed, a recent analysis of Ae. vigilax population dynamics

in northern Australia demonstrated that negative density feedback

alone accounts for over 31% of the deviance in population growth

rate, with another 40% of the deviance explained by the addition

of high tide frequency, rainfall and relative humidity [10]. This

combination of negative density feedback and environmental

influences contribute to the characteristic oscillatory pattern of

peaks and troughs in mosquito abundance over the course of a

single year.

These characteristic fluctuations in abundance produce large

amplitude changes in the peak timing of biting adult mosquitoes,

with some extreme events occurring at wave lengths of several

years. High-magnitude peaks in abundance are often correlated

with the outbreak of diseases [11–13]. As such, the ability to

predict the timing and magnitude of population peaks is an

essential precursor to effective control and risk management (e.g.,

public warnings). A previous analysis of density fluctuations in

mosquitoes in northern Australia focused on the interplay between

density feedback and environmental stochasticity [9,10]. However,

there is now a need to determine what conditions lead specifically

to a higher probability of high-abundance peaks that precipitate
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disease outbreaks. Identifying the timing and intensity of future

abundance peaks is also important for maximising control

efficiency because the sub-optimal and liberal application of

chemical and biological pesticides has generated several ancillary

problems, including excessive financial costs, the evolution of

insecticide resistance via repeated exposure, safety risks for

humans and domestic animals, and environmental contamination

[14–16]. The ability to define the most effective timing and spatial

configuration for applying control measures, using the smallest

quantity of insecticide, will not only reduce the frequency and

severity of disease outbreaks, it will alleviate many of the

environmental and logistical problems associated with control

and reduce costs.

There are a number of approaches developed to explain the

basic causes underlying fluctuations in natural and controlled

populations [17–20]. Various approaches have stressed the

importance of weather variability, the dynamics of natural

predators, prey or competitors, overcrowding, and so on [21,22].

Yet few have been constructed to forecast simultaneously the

magnitude and timing of peak population sizes in species

experiencing regular density irruptions. One notable exception is

the use of marginal logistic regression models to predict the timing

of southern pine beetle (Dendroctonus frontalis) outbreaks [17]. This

approach examined the influence of explanatory variables on host

availability, physiography, climate, extreme weather events, and

management protocols after accounting for spatial and temporal

autocorrelation [17].

Modelling chaotic behaviour in population dynamics provides

another approach to identify optimal intervention times. Hilker

and Westerhoff [18] presented a simple method to guide

management efforts in preventing crashes, peaks, or any other

undesirable state in chaotic population dynamics. The method is

illustrated by two examples based on captive populations of the

flour beetle (Tribolium sp.): (1) alleviation of extinction risk in the

Ricker model: Ntz1~Nte
r 1{ Nt=Kð Þ½ � (where Nt = relative abun-

dance at time t, r [population rate of change] = loge(Ntz1/Nt) and

K = carrying capacity), and (2) control of outbreaks in a stage-

structured demographic model. First, an abundance time series of

the population is analysed to identify paths that lead to crashes or

outbreaks. The second step is to manipulate population abun-

dance to force it out of the danger zone preceding either a crash

(prevention of extinction) or a peak (eliminating outbreaks).

Ecological data are normally the emergent or phenomenolog-

ical expression of a set of complex processes that are difficult to

model mechanistically, so they cannot normally be well-repre-

sented by any one model. Model selection may help to identify

which simplification of reality provides the most parsimonious

explanation of the phenomenon, and multi-model inference

(MMI) will draw conclusions from a weighted average over

predictions made by the suite of candidate models considered

[23,24]. Previously, we used MMI for a series of phenomenolog-

ical models to examine the principal drivers of population change

in two well-monitored mosquito species from northern Australia

[9,10].

Using weekly relative abundance data (from CO2 traps),

collected over 15 years in Darwin, northern Australia, we

previously determined the subtle and complex interactions

between density and environmental conditions [9,10]. But this

study did not examine the conditions leading to peaks in

abundance over time. Here we extend our earlier approach to

investigate explicitly whether the timing and magnitude of

abundance peaks in Ae. vigilax can be determined (and so

predicted) from a suite of intrinsic and measureable extrinsic

components. High tide frequency and low rainfall lead to higher

population growth rates in this species [10], with low rainfall in the

late dry season and early wet season, in particular, facilitating

mosquito breeding and subsequent abundance peaks, especially if

it occurs during favourable tides. Ae. vigilax breeds primarily in

saline to brackish wetlands along the coast, where females lay their

eggs on moist mud and at the base of plants in high marshlands

dominated by brackish water reeds (Schoenoplectus spp.) or

mangroves (Avicennia spp. or Bruguiera spp.) [10].

With the highest tides able to flood the salt marshes, Ae. vigilax

eggs are hatched immediately; however, as the tide retreats, more

eggs are laid on moist substrata where they mature quickly and

become drought-resistant and persist until the onset of the next

high tide cycle or rain event [10]. The interval between hatchings

may take weeks to months depending on the tidal patterns and

rainfall, but low rainfall following the first high tide is likely to

maintain sufficient soil moisture and salinity to support continued

hatching [10], thus maintaining the surge of recruitment into the

adult population. For the Darwin region, the first high tide.7.4 m

in the late dry season (September), followed by light rains, will

normally precipitate a rapid rise in the mosquito’s rate population

of change (r) and a subsequent peak in abundance in November

[10,25].

Using weekly mosquito-capture data collected over 15 years in

the greater Darwin area, tropical north Australia, our specific

objectives were to (i) evaluate the oscillation pattern of both the

rate of population increase (r) and abundance over the 15 years,

and (ii) estimate the relationship between peak occurrence and

magnitude and changes to previously identified environmental

correlates of abundance (i.e., tidal factors, rainfall and relatively

humidity). Rather than simply repeat our previous work

examining the processes influencing fortnightly relative abun-

dance [9,10], our approach was to simplify the time series and

focus only on periods of highest relative abundance, indicative of

peaks (and by proxy, potential disease outbreaks). Our overarch-

ing aim is to provide decision makers charged with suppressing

mosquito abundance with practical advice on the timing for

optimal control strategies in this and other species of mosquitoes

implicated in the spread and maintenance of human infectious

diseases.

Author Summary

Mosquitoes carry several diseases that are potentially fatal
to people. The risk of disease transmission is high when
mosquitoes are abundant in an area, and it is therefore the
job of health professionals to control or prevent mosquito
outbreaks in certain areas, especially those close to human
habitation. Biologists that study mosquito populations
have the ability to predict peaks in mosquito population
abundance by relating measures of these with environ-
mental variables, such as tidal events and rainfall. Here we
analysed data of mosquito (Aedes vigilax) populations from
northern Australia over 15 years. We compared the highs
and lows in mosquito numbers to possible drivers of these,
such as tides. We found that low tide events prior to the
mosquito peaks were followed by a boom in mosquito
numbers. We also found the highest population growth
rate is in September, which is two months earlier than the
peak of mosquito abundance. Thus, following low tide
events in the dry season, targeted control (such as
spraying in earlier September) of mosquito breeding areas
may allow for more effective control of mosquitoes close
to human settlement, and therefore reduce the likelihood
of disease outbreaks.

Predicting Mosquito Population Peaks
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Materials and Methods

Study area and data
Eleven monitoring locations were selected in the geographical

region between 12u 22–259S latitude and 130u 51–569E longitude,

in the swampy regions surrounding Darwin, Northern Territory,

Australia [9,10,26]. CO2-baited mosquito traps [27] were checked

weekly at each location by the Medical Entomology Branch of the

Northern Territory Department of Health and Community

Services. We assume the light intensity of the traps was the same

throughout the duration of the observations. Therefore, the

variation in population density is mainly a reflection of total

population abundance rather than an artefact of sampling effort

(see [9] for a more detailed justification).

Previously [9,10], we argued that the comparison of monthly

summary data avoids the potential confounding effects of age

structure and overlapping generations, as well as providing a

reasonable representation of fluctuations in population density

over time. Ae. vigilax also exhibits only weak spatial heterogeneity

within the study region, allowing us to pool population density

data among the 11 trap locations as an arithmetic mean [9]. The

final dataset covered 180 months from January 1991 to December

2005 (15 years).

A visual examination of the oscillations of mosquito abundance

time series clearly shows the semi-regular occurrence of high-

abundance ‘peaks’ interspersed with low-abundance ‘troughs’

(Fig. 1A). Our a priori hypothesis is that environmental variation

can be used to predict the frequency and magnitude of abundance

peaks after taking density feedback into account. To test this

hypothesis, we split the relative abundance time series for Ae. vigilax

from 1991 to 2005 into periods representing seasonal periodicity:

relatively high (September–February), and low (March–August)

abundance periods (28 seasonal intervals over 15 years) (Fig. 1B).

For each six-month period, the numbers of mosquitoes were

summed in subsequent analyses. Monthly population growth rates

(r) were taken as rt = loge(Ntz1/Nt), where Nt is the measure of

relative abundance at time point t.

Environmental conditions
Monthly environmental data covering the same interval as the

mosquito abundance dataset were provided by the Australian

Government Bureau of Meteorology (www.bom.gov.au). Frequen-

cy of high tide (Fig. 2A), rainfall (Fig. 2B) and relative humidity

have all been previously identified as correlated with the rate of

population change for this species, with the strongest explanatory

variable being high tide frequency [10]. For the question at hand,

we also considered two additional descriptors of tidal patterns that

measure the magnitude of tidal influence in these ephemeral

saltwater habitats: (1) accumulated tide height per month, and (2)

maximum tide height per month (Fig. 2C).

Periodicity
Our previous work [10] determined that the ecosystem’s

carrying capacity is relatively invariant compared to Ae. vigilax’s

response to fluctuating extrinsic conditions. Therefore, periodicity

in relative abundance (N ) represents mainly the population’s

response to environmental conditions promoting egg hatching,

larval development and adult dispersal. Periodicity in r, on the

other hand, indicates variation in the population’s relative

distance from carrying capacity, and so is more indicative of

internal feedback mechanisms. We therefore examined periodic-

ity in both properties to determine the oscillatory dynamics of Ae.

vigilax.

Let Nt and rt be the monthly mosquito abundance and

population growth rate, respectively. We fitted a seasonality model

through the harmonic curves of Nt and rt of the following form:

Nt*aN � sin 2 � p � f � tð ÞzbN � cos 2 � p � f � tð ÞzcN � t

ze, e*Normal 0,s2
N

� � ð1Þ

rt*ar � sin 2 � p � f � tð Þzbr � cos 2 � p � f � tð Þzcr � t

ze, e*Normal 0,s2
r

� � ð2Þ

which can be simplified to:

Nt*AN � sin 2 � p � f � tzQNð ÞzcN � tze,

e*Normal 0,s2
N

� � ð3Þ

rt*Ar � sin 2 � p � f � tzQrð Þzcr � tze, e*Normal 0,sr
2

� �
ð4Þ

Here, amplitude A~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2ð Þ

p
(a and b are the estimated

coefficients for the sine and cosine terms in Equations 1 and 2);

f ~the f requency (1 month/12 months); Q is the phase

shif t~arccos b=Að Þ, and t defines any linear temporal trends in

the response. The month where the seasonal peak occurs is then:

Figure 1. Monthly and six-month accumulated abundance (N)
of Ae. vigilax mosquitoes from 1991–2005 (principal y-axis) and
the rate of population change (r) (secondary y-axis). A. Monthly
dataset. B. Six-monthly reduced dataset in the periods of abundance
peaks and troughs.
doi:10.1371/journal.pntd.0000385.g001
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peak month~
6

p
2npz

p

2
{Q

� �
ð5Þ

where n = is the number of the cycle. The fundamental time-series

modelling tool for spectral analysis is the periodogram, which is

based on the squared correlation between the time series and sine-

cosine waves of frequency. Periodograms were analyzed using the

spec.pgram function in the R Package v2.4.0 [28].

Predicting abundance peaks
Two sets of models were used to examine the correlation

between mosquito abundance peaks (Fig. 1B) and the environ-

Figure 2. Temporal plots of environmental variables measured from 1991–2005. A. Number of high tides.7.0 m per month from 1991–2005.
B. Total rainfall (mm) from 1991–2005. C. Monthly accumulated tide height (principal y-axis) and maximum tide height per month (secondary y-axis).
doi:10.1371/journal.pntd.0000385.g002
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mental drivers considered:

Npeak tð Þ*Ntrough t{1ð Þzb � Epeak tð Þze, e*Normal 0,s2
� �

ð6Þ

Npeak tð Þ*Ntrough t{1ð Þzb � Etrough t{1ð Þze, e*Normal 0,s2
� �

ð7Þ

where Npeak tð Þ and Ntrough tð Þ denote total mosquito population size

during the identified peak and trough intervals, respectively,

b
*

~

b0

b1

..

.

bn

0
BBB@

1
CCCA is the vector of coefficients for the n environmental

drivers considered, and Epeak tð Þ and Etrough tð Þ represent the vector

of environmental drivers (E1t, E2t . . . Ent,) during the peak and

trough intervals, respectively. Our previous identification of a

strong density feedback component in the oscillation dynamics of

this mosquito species [9] argued for the inclusion of the previous

Ntrough value as an explanatory covariate (Equations 6 and 7). The

mid-point of the trough interval (6-month duration) occurs exactly

6 months prior to the identified peak date given the definition of

Figure 3. Box-and-whisker plots showing the monthly variation
in population density of Ae. vigilax from 1991–2005. Monthly
values show the median, 10 and 90 percentiles, and the minimum and
maximum observations.
doi:10.1371/journal.pntd.0000385.g003

Figure 4. Estimated periodogram of the de-trended time-series of monthly abundance and population change (r) of Ae. vigilax in
Darwin, 1991–2005. A. monthly abundance of Ae. vigilax. B. monthly population change rate (r) of Ae. vigilax.
doi:10.1371/journal.pntd.0000385.g004
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the ‘trough’ and ‘peak’ periods and the identification of dominant

12- and 6-month periodicities (see Results).

We contrasted a total of 44 models comprising various

combinations of the terms of interest, fitted using maximum-

likelihood estimation. All analyses were done using the R Package

[28]. Model comparisons were based on multi-model inference

(MMI) using Akaike’s Information Criterion corrected for small

sample size bias (AICc) as an estimate of Kullback-Leibler (K-L)

information loss [24,29]. The difference between the model’s

criterion and the top-ranked model (DAICc) and the relative model

weights (wAICc) were calculated. Thus, the strength of evidence

(wAICc) for any particular model varies from 0 (no support) to 1

(complete support) relative to the entire model set. For each model

we also calculated the % deviance explained (%DE) as a measure

of the model’s goodness-of-fit, the predicted R2 as a measure of the

% variance explained, and the leave-one-out cross-validation

prediction error (C-Ve) based on the cv-glm command in the R

Package [28] to validate the robustness of the predictions.

Results

Periodicity
Figure 1A shows the time series of monthly mosquito

abundance (N ) and population rate of change (r) between 1991–

2005, clearly depicting the strong seasonality in the temporal

pattern of both N and r. In Figure 1B, the reduced peak-trough

dataset is presented. For the N time series, amplitude (A) of the

time-series curve was 62.98 trap-caught individuals: fitted

mosquito abundance fluctuated between 0 and 125.96 per trap

(2A). The seasonal peak of the mosquito population occurs in early

November (month 11.3); the September–February period is

considered the high-abundance season, and March–August the

low-abundance season (Fig. 1B and 3). The coefficients for the sine

and cosine elements in the N periodicity model were 215.95 and

60.93, respectively. We found weak evidence for a slight uptrend

in N (coefficient = 0.06242 [SE = 0.116]) over time between 1991–

2005.

For r, the amplitude (A) of the time series = 0.66, with the

seasonal peak occurring at the beginning of September (9.0),

which is over two months earlier than the expected mosquito

abundance peak. The periodograms of N and r (Fig. 4) confirm the

seasonality with strongest periodicities of 12 months (largest peak

with frequency 1/12 = 0.08), followed by a weaker periodicity of

6 months (second highest peak with frequency 1/6 = 0.17). The

coefficients for the sine and cosine elements in the r periodicity

model were 20.58 and 20.32, respectively.

Predicting abundance peaks
Among the two sets of models, the frequency of high tides above

7 m per month in the previous trough interval had the strongest

wAICc support for explaining variance in N during the high-

abundance period (Npeak) after accounting for the previous

trough’s abundance (Table 1). In the top-ranked model,

Npeak tð Þ*Ntrough t{1ð Þztide w7 mð Þf requencytrough t{1ð Þ,

the first (N trough(t21)) and second (tide.7 m frequency) term’s

coefficient estimates were 20.98 and 239.07, respectively. This

demonstrates that the combination of low mosquito abundance

and a low frequency of high tide exceeding 7 m in the previous

low-abundance (trough) period were the most parsimonious

predictors of a peak’s magnitude (Fig. 5A), with the model

explaining over 50% of the deviance in Npeak. This was also

confirmed by the leave-one-out cross-validation. The top wAICc-

ranked model also had the lowest prediction error (Table 1).

Table 1. The 13 highest-ranking correlative models linking abundance of Ae. vigilax during the peak (outbreak – high density)
periods to plausible environmental drivers, with Ntrough (low density) being a control variable to account for density-dependent
recovery due to compensatory population regulation [9].

Model LL k AICc DAICc wAICc C-Ve %DE R2

Npeak,Ntrough+T.7 2100.982 4 214.408 0.00 0.316 171749.4 50.1 0.41

Npeak,Ntrough+T.7+T.M. 298.758 5 215.016 0.61 0.233 172387.8 63.7 0.53

Npeak,Ntrough+T.7+T.S. 299.065 5 215.630 1.22 0.171 173777.4 62.0 0.51

Npeak,1 2105.843 2 216.778 2.37 0.097 249122.7 0.0 0.00

Npeak,Ntrough+T.7+Rain 2100.411 5 218.322 3.91 0.045 181632.6 54.0 0.40

Npeak,Ntrough+T.7+RH 2100.678 5 218.855 4.45 0.034 206598.1 52.2 0.38

Npeak,Ntrough
2105.763 3 219.925 5.52 0.020 278135.2 1.2 20.07

Npeak,Ntrough+Rain 2104.037 4 220.518 6.11 0.015 274945.2 22.8 0.09

Npeak,Ntrough+T.7+T.S.+RH 298.420 6 220.840 6.43 0.013 222182.8 65.4 0.50

Npeak,Ntrough+T.M. 2104.251 4 220.947 6.54 0.012 254994.1 20.4 0.06

Npeak,Ntrough+T.7+T.M.+RH 298.698 6 221.395 6.99 0.010 229772.0 64.0 0.48

Npeak,Ntrough+T.S. 2104.544 4 221.533 7.12 0.009 279307.5 16.9 0.02

Npeak,Ntrough+Rain (p) 2104.656 4 221.757 7.35 0.008 287998.4 15.6 0.003

The models incorporating environmental conditions in the peak period are indicated by ‘(p)’. The environmental variables include: frequency of high tide.7 m per
season (T.7), accumulated tide height per season (T.S.), average of monthly maximum tide height per season (T.M.), total rainfall (Rain) per season and relative humidity
(RH). Shown are LL = maximum log-likelihood, k = number of parameters, AICc = Akaike’s Information Criterion corrected for small sample sizes, DAICc = the difference
between the model AICc and the minimum AICc in the set of models, and AICc weights (wAICc) = the relative likelihood of model i, C-Ve= leave-on-out cross-validation
prediction error, %DE = % deviance explained by the model and R2 = predicted R2 (this can take negative values when the fit is ranked lower than the intercept model).
doi:10.1371/journal.pntd.0000385.t001
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Model weights were also relatively high for those including

maximum tide height, accumulated tide height or total rainfall in

the trough period (Table 1, Fig. 5B–D), with high values in the

trough correlating negatively with the onset of a high-abundance

peak. For the second highest-ranked model including N trough(t21),

tide frequency and maximum tide height (Table 1), the coefficients

were 20.69, 276.92 and 4281, respectively. For the third highest-

ranked model including N trough(t21), tide frequency and accumu-

lated tide height (Table 1), the coefficients were 21.41, 268.75

and 20.38, respectively.

We used the three most highly ranked models (Table 1),

accounting for 72% of the model weights (the fourth-ranked model

was the intercept-only model (no predictors), so this was excluded

along with the remaining models that accounted for ,18% of the

remaining weights), to calculate a model-averaged Npeak predic-

tion (Fig. 6). Based on these results, it can be seen that predictions

mimic observed values rather well. With the primary applied aim

of predicting the highest-abundance peaks, our method thus

provides an adequate tool for managers to prepare and mitigate

mosquito outbreaks.

Discussion

Ae. vigilax is a particularly notorious and heavily controlled

mosquito species in Australia because of its role in the spread and

maintenance of several serious infectious human diseases such as

Ross River and Barmah Forest fevers [30,31]. Indeed, these two

diseases were the most common mosquito-borne diseases reported

in Australia in 2005–2006 [32], with over 5000 cases of Ross River

fever reported annually. Previous studies suggested that human

infection rates are related to the appearance of large numbers of

adult Ae. vigilax [8], with the recommendation that targeted control

of adults in disease-prone areas could reduce the number of cases

substantially. As such, identifying the environmental and biological

precursors that herald the onset of peaks in mosquito abundance

provide health and land-use managers the capacity to predict the

timing and distribution of the most efficient and cost-effective

mosquito control. Our results presented here on the amplitude and

timing of outbreaks, when combined with the more general

previous work on intrinsic and environmental determinants of

mosquito population dynamics [9,10], clearly demonstrate that a

relatively simple set of conditions – low abundance of adult

mosquitoes in the trough season, coupled with a low frequency of

high tide and low rainfall – can predict peaks in mosquito

abundance and potentially outbreaks of human disease with

sufficient reliability to be a useful decision-making tool for

managers.

The rate of population change (r) has been widely used to model

the way in which animal or plant populations change with time

[33,34]. We found that the low relative abundance during the dry

season months were generally indicative of impending population

peaks. Hence, the development of ideal environmental conditions

(see below), coupled with rapidly rising abundances, indicate the

optimal times to apply control in swamps surrounding human

settlements to minimize the magnitude of subsequent peaks.

Further, we found that maximum r generally occurred around two

months prior to the appearance of abundance peaks, so that

regular monitoring should provide managers with ample prepa-

ratory time in which to organise and implement widespread

control (e.g., in September for Ae. vigilax in Darwin).

Our results suggest that control operations for Ae. vigilax in

northern Australia should target the period approximately two

months leading up to an eventual peak, when ‘trough’ abundances

are relatively low and few recent high tide events have occurred.

Thus, following low tide events in the dry season, targeted control

such as spraying of mosquito breeding swamps in early September

will allow for more effective control close to human settlements.

Another element to optimise reduction efficiency is the spatial

configuration of control measures. In Darwin, the bacterial

larvicide, Bacillus thuringiensis var. israelensis (B.t.i), and temephos

(an organophosphorus insecticide), are widely used for larval

control and are broadcast via ground and aerial (helicopter)

operations [35]. Adulticides are generally less effective due to the

ability of adult mosquitoes to disperse over wide areas, including

human settlements (e.g., [36]). Control is often done at a local,

administrative scale, with the choice of spatial configuration

depending traditionally on accumulated trial-and-error knowledge

rather than any systematic analysis of spatial data. Many other

mosquito control studies have placed emphasis on determining the

optimal spatio-temporal distribution of adult mosquitoes [8,37,38].

We suggest that such approaches should also be applied to Ae.

vigilax larvae to improve control efficiency further.

Perhaps counter-intuitively, we found that the magnitude of

mosquito peaks was negatively associated with the frequency of

high tide above 7 m and maximum high tide over the previous

season of low abundance. This may be explained by considering

the chaotic population dynamics typical of oscillating populations.

Both aquatic (e.g., algal blooms) [39] and terrestrial (e.g., insect

outbreaks) [40] studies have found that population crashes are

often preceded by an immediate peak in population size, and vice

versa. For instance, in a series of microcosm experiments, Hilker

and Westerhoff [18] showed that the addition of adult flour beetles

(Tribolium castaneum) immediately prior to the occurrence of an

anticipated population peak reduced the probability that one

Figure 5. Monthly abundance of Ae. vigilax (black lines; principal y-axis) in relation to environmental correlates (secondary y-axis).
A. Frequency of high tides.7.0 m per month (grey); B. Accumulated tide height per month (grey); C. Maximum tide height per month (grey); D. Total
rainfall (mm) per month (grey).
doi:10.1371/journal.pntd.0000385.g005

Figure 6. Model-averaged predictions based on the three most
highly ranked models to predict mosquito abundance during
the peak period (Npeak) (see Table 1) relative to observed
abundances. Also shown is the optimum 1:1 relationship between
observed and predicted peak abundances.
doi:10.1371/journal.pntd.0000385.g006
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would occur. This is generally attributed to the strong negative

feedback on the survival and perhaps fertility of individuals

invoked by intra-specific density-related competition and preda-

tion [9,18]. In the case of Ae. vigilax, the lack of high tides during

the low-abundance phase necessarily impedes the hatching of eggs,

leading to low initial population densities as the season progresses.

The low densities and accumulation of eggs therefore provide the

opportunity for en masse hatching and high post-hatching survival

once conditions become favourable, leading inevitably to high-

magnitude peak in adult abundance.

In conclusion, we have shown that basic environmental

monitoring data can be coupled to relatively simple density-

feedback models to assist in predicting the timing and magnitude

of mosquito peaks which lead to disease outbreaks in human

populations. Our results demonstrate this capacity for the control

of a mosquito species in northern Australia which is responsible for

many cases of infectious viral diseases. We propose that our model

can be applied to any other mosquito populations where the

appropriate monitoring and environmental data are available, so

that optimal levels of control (i.e., least-cost measures bringing the

largest decline in mosquito abundance) can be implemented to

alleviate suffering and save lives and money in tropical regions

worldwide.
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