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INTRODUCTION

Species distribution modelling has been applied widely in

conservation ecology (Guisan & Zimmermann, 2000; Hirzel

et al., 2002; Guisan & Thuiller, 2005; Phillips et al., 2009)

to understand the role of environmental conditions driving

distribution and abundance patterns. Predictions arising from

this approach are essential to determine the likely effects of

habitat change on persistence probability or community

structure (Araújo & Williams, 2000; Beaumont et al., 2007).
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ABSTRACT

Aim Predicting distribution patterns of whale sharks (Rhincodon typus, Smith

1828) in the open ocean remains elusive owing to few pelagic records. We

developed multivariate distribution models of seasonally variant whale shark

distributions derived from tuna purse-seine fishery data. We tested the hypotheses

that whale sharks use a narrow temperature range, are more abundant in

productive waters and select sites closer to continents than the open ocean.

Location Indian Ocean.

Methods We compared a 17-year time series of observations of whale sharks

associated with tuna purse-seine sets with chlorophyll a concentration and sea

surface temperature data extracted from satellite images. Different sets of pseudo-

absences based on random distributions, distance to shark locations and tuna

catch were generated to account for spatiotemporal variation in sampling effort

and probability of detection. We applied generalized linear, spatial mixed-effects

and Maximum Entropy models to predict seasonal variation in habitat suitability

and produced maps of distribution.

Results The saturated generalized linear models including bathymetric slope,

depth, distance to shore, the quadratic of mean sea surface temperature, sea

surface temperature variance and chlorophyll a had the highest relative statistical

support, with the highest percent deviance explained when using random pseudo-

absences with fixed effect-only models and the tuna pseudo-absences with mixed-

effects models (e.g. 58% and 26% in autumn, respectively). Maximum Entropy

results suggested that whale sharks responded mainly to variation in depth,

chlorophyll a and temperature in all seasons. Bathymetric slope had only a minor

influence on the presence.

Main conclusions Whale shark habitat suitability in the Indian Ocean is mainly

correlated with spatial variation in sea surface temperature. The relative influence

of this predictor provides a basis for predicting habitat suitability in the open

ocean, possibly giving insights into the migratory behaviour of the world’s largest

fish. Our results also provide a baseline for temperature-dependent predictions of

distributional changes in the future.
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Such models incorporate information on environmental con-

ditions and combine these with the known distribution of a

species or population to define its ecological niche (Hutchison,

1957; Kearney & Porter, 2009) and predict its probability of

occurrence in a location where no biological information is

currently available (Robertson et al., 2003).

The use of these models in terrestrial systems is common-

place (Lehmann et al., 2002); however, their application in

non-terrestrial systems is rare with only a few marine examples

such as seagrass beds (Kelly et al., 2001), bryophytes (Sérgio

et al., 2007), coral communities (Garza-Pérez et al., 2004; Beger

& Possingham, 2008; Tittensor et al., 2009; Mellin et al., 2010),

shellfish in coastal ecosystems (Sequeira et al., 2008) and

dolphins/whales in the Mediterranean Sea (Praca & Gannier,

2007) and in the eastern tropical Pacific Ocean (Oviedo & Solı́s,

2008). To our knowledge, they have not been applied to the

distribution of widely dispersed pelagic fishes in open oceans.

Data collection in marine environments is often ‘very difficult,

resource-intensive and expensive’ (Richardson & Poloczanska,

2008), and the logistics of this task is much greater in the pelagic

realm where work is typically based aboard large vessels. There

is limited opportunity for synoptic sampling because few

research programmes can afford multiple ships operating

simultaneously, and data sets of distribution of fishes typically

contain only reports of presence; therefore, confirming true

absences can be difficult (Zaniewski et al., 2002).

Although some statistical techniques can cope with pres-

ence-only data – e.g. ENFA (Hirzel et al., 2002), BIOCLIM

(Thuiller et al., 2009), Maximum Entropy (MaxEnt) (Phillips

& Dudı́k, 2008) – and produce acceptable results (Zaniewski

et al., 2002; Elith et al., 2006), regression methods such as

boosted regression trees (De’ath, 2007; Elith et al., 2008),

multivariate adaptive regression splines (Leathwick et al.,

2005) or generalized linear or additive models (Nelder &

Wedderburn, 1972; Hastie & Tibshirani, 1986) tend to provide

more realistic projections when using reliable and accurate

absence data (Zaniewski et al., 2002; Brotons et al., 2004).

Where such data are unavailable to use in regression models,

an alternative approach is to generate pseudo-absences that

should, ideally, also account for any spatial bias in the

sampling effort (Phillips et al., 2009).

The whale shark (Rhincodon typus, Smith 1828) is the largest

of all fish and can reach more than 12 m in total length

(Stevens, 2007). Although little is known about its habitat

selection or migration patterns, the whale shark appears to be a

highly mobile species. It is distributed in oceanic and coastal

tropical waters (Last & Stevens, 1994; Compagno, 2001) from

30� N to 35� S, spending most of its time (often > 80%) at the

surface (waters < 20 m deep), with regular excursions to

depths of 300–500 m during the day when transiting the open

ocean (Wilson et al., 2006; Brunnschweiler et al., 2009). Whale

sharks are known to aggregate nearshore in a number of

coastal locations (e.g. see Rowat, 2007). This behaviour makes

them the subject of highly lucrative ecotourism industries

around the world (Martin, 2007; Rowat & Engelhardt, 2007),

although in the past, such aggregations have also been targeted

by commercial fishing (Joung et al., 1996; Pravin, 2000;

Stevens, 2007; White & Cavanagh, 2007). While large-scale

fisheries have closed, artisanal and small-scale fisheries for the

species still exist in many parts of the tropics (Stewart &

Wilson, 2005; White & Cavanagh, 2007; Riley et al., 2009). As

the whale shark is considered a vulnerable species (IUCN,

2010), Bradshaw et al. (2008) stressed the importance of

understanding their migratory behaviour because they can

travel from regions where they are protected to those where

they are still under threat.

At present, there is little information on the habitat

requirements and pelagic distribution of any filter-feeding

shark (Sims et al., 2003; Southall et al., 2006), although

movements of whale sharks have been associated with climate

and surface water conditions (Cárdenas-Palomo et al., 2010;

Sleeman et al., 2010a), plankton blooms (Colman, 1997;

Kumari & Raman, 2010) and other potential food sources

(Wilson, 2002; Meekan et al., 2009). These fine-scale studies

(100s m–100s km) and other hypotheses have never been

formally tested at the ocean-basin scale (1000s km) (Southall

et al., 2006; Cárdenas-Torres et al., 2007; Rowat, 2007).

Access to a 17-year data set of whale shark sightings

generated by the tuna fishing industry in the Indian Ocean

offered the opportunity to examine distribution patterns of

this species in the open ocean. By combining these data with

environmental time series measured via remote sensing, we can

potentially infer seasonal patterns in habitat suitability for

whale sharks at spatial scales likely to encompass the range of

entire populations. Our main objectives were to: (1) determine

the spatiotemporal patterns in habitat suitability for whale

sharks over a broad (ocean basin) spatial scale and (2) identify

the most important determinants of whale shark distribution;

we tested the hypotheses that specific temperature ranges,

productivity values and distance from shore functions drive

seasonal spatial distribution of whale sharks.

METHODS

Data set collected by tuna fisheries (whale shark

presences)

Whale sharks, mainly associated with net sets for tuna catch

(hereafter referred to as whale shark sightings), were recorded

by purse-seine fishers registered at the Indian Ocean Tuna

Commission (IOTC; Pianet et al., 2009), and these data were

made available by vessel owners through the Institut de

Recherche pour le Développement (IRD; France). The data set

consisted of a 17-year (1991–2007) time series of (1) whale

shark sightings, date and location (longitude and latitude at

0.01� precision) for a total of 1185 whale sharks and (2) tuna

catch (tonnes) and fishing effort (days) pooled for each 5� grid

cell, per month and per year (6618 records total).

The data set covered 172,800 km2 of the Indian Ocean between

30� N–30� S and 35–100� E (Fig. 1a). When all years were

combined, a total of 811 whale sharks were recorded in autumn

(April–June; 68% of records), 68 in winter (July–September;

Environmental drivers of whale shark distribution

Diversity and Distributions, 18, 504–518, ª 2011 Blackwell Publishing Ltd 505



6%), 191 in spring (October–December; 16%) and 115 in

summer (January–March; 10%) – austral seasons. We divided the

number of sightings by the fishing effort of associated catches to

calculate a sightings-per-unit-effort index (SPUE – with unit

effort being fishing days), for each month across the study area

(Fig. 1a). We applied a Kruskal–Wallis analysis to the whale shark

locations per season to test whether the distributions of whale

shark SPUE varied among seasons.

We also obtained a second data set of tuna catches in the

Indian Ocean derived from the same raw data as the whale shark-

associated sets, covering the same spatial extent but aggregated at

a finer scale (1� resolution) (Pianet et al., 2009). This data set

consisted of: total tuna catch (tonnes) and fishing effort (days)

pooled for each 1� grid cell per month (Fig. 1b). As for the 5�
resolution data set, we estimated the normalized catch-per-unit-

effort (CPUE) by dividing the total tuna catch by the fishing

effort in each grid cell for each month across the study area.

To reduce bias associated with temporal autocorrelation and

test the hypothesis that specific environmental parameters

(e.g. SST, or Chl a – used here as a proxy for food availability)

affect whale shark distributions in a specific season, we split the

data into four groups each of them corresponding to quarters of

the year and defined here as summer (January–March), autumn

(April–June), winter (July–September) and spring (October–

December).

Pseudo-absence data set generation

Whale shark data set was presence-only, as true absences were

unknown. We therefore generated pseudo-absences for use in

generalized linear models (GLM) and spatial generalized linear

mixed-effects models (GLMM). The pseudo-absence locations

were also included as background data in additional MaxEnt

runs, to obtain more comparable results between the two

modelling procedures.

To assess the influence of the method used to generate

pseudo-absences on model outputs, we generated the same

number of pseudo-absences as presence records for each season

following three different methods: (1) random selection of non-

presence grid cells within the 9-km grid over the entire area

(b)(a)

20°

0°

–20°

Figure 1 Indian Ocean Tuna Commission (IOTC) data sets collected from 1991 to 2007 on tuna purse-seine fisheries in the Indian Ocean.

(a) Tuna-associated fisheries per 5� grid cell including whale shark (Rhincodon typus, Smith 1828) associated net sets (hereafter referred to as

sightings): top panel – area covered by the fisheries (grey) and 1185 whale shark sightings (blue dots); middle panel – associated effort in days

spent fishing within the area sampled; bottom panel – whale shark sightings per unit effort (SPUE) of associated fisheries (in sightings per

fishing day). Grey areas represent sampled area where no whale sharks were sighted. (b) Tuna total fisheries per 1� grid cell: top panel – total

tuna catch; middle panel – total fishing effort in days; bottom panel – total tuna catch per unit effort (tons per fishing day).

A. Sequeira et al.
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accounting for uneven sampling bias by weighting pseudo-

absences by the fishing effort in the same area (random), (2)

selection of non-presence grid cells with a probability that was

weighted by the inverse distance to the whale shark presences

(IDW), assuming that detection probability was higher near

recorded presences and to account for the same spatial bias and

(3) selection weighted by the total tuna catch from the 1� data

set (tuna), assuming that whale sharks and tuna would have

similar distribution patterns owing to their association – it is a

common practice among tuna fishers to use whale sharks as

indicator species when targeting tuna (Matsunaga et al., 2003),

making whale shark absences more likely to occur in areas of

high tuna catch (and high fishing effort), but where no whale

shark sightings were recorded.

We generated each set of pseudo-absences 100 times using

the srswor function (simple random sampling without replace-

ment) from the Sampling package in R (R Development Core

Team, 2010) prior to their use in GLM and GLMM.

Environmental variables

We collated a environmental data set at 9-km resolution over

the study area that included bathymetry (including mean

depth in meter and slope in degree), distance to shore (km),

distance to shelf (km), seasonal mean and standard deviation

of chlorophyll a concentration (Chl a in mg m)3) and sea

surface temperature (SST in �C). We initially collated

bathymetry data (see Fig. S1 in Supporting Information)

across the study area at approximately 1.7-km resolution

using the one-min grid for the General Bathymetry Chart of

the Oceans (GEBCO, 2003). Mean depth and slope were then

calculated for each 9-km grid cell. For each whale shark

sighting, we calculated the shortest distances to the coast and

to the continental shelf in ArcGIS 9.2 (ESRI Inc., 2008;

Redlands, California, USA) with the Near tool using a World

Equidistant Cylindrical coordinate system.

We obtained Chl a and SST data at a 9-km resolution from

relayed image composites from the Sea-viewing Wide Field-of-

view Sensor (SeaWiFS - http://oceancolor.gsfc.nasa.gov/Sea

WiFS/) and Moderate Resolution Imaging Spectroradiometer

(MODIS-Aqua - http://oceancolor.gsfc.nasa.gov/DOCS/MOD

ISA_processing.html), respectively (see Figs S2 and S3 in

Supporting Information). We averaged weekly daytime mea-

sures available since September 1997 for SeaWiFS and July

2002 for MODIS-Aqua. For each season, we calculated the

resulting Chl a and SST mean and standard deviation in R (R

Development Core Team, 2010). Owing to non-Gaussian data,

we investigated monotonic relationships among environmental

predictors using Spearman’s rank correlation coefficient (q).

Models

Generalized linear and mixed-effects models

We set GLM with a binomial error distribution and a logit link

function to compare, for each season, the predictive ability of

all possible combinations of environmental predictors. We

included a quadratic term for SST to account for the

possibility of a selected temperature range given that they

are poikilotherms and external temperatures likely affect their

metabolic processes (Bullock, 1955).We compared models

based on two bias-corrected indices of parsimony (Burnham &

Anderson, 2004): the information-theoretic Akaike’s informa-

tion criterion corrected for small sample sizes (AICc) and the

Bayesian information criterion (BIC). AICc favours more

complex models (with higher predictive capacity) when

tapering effects exist and sample sizes are large, whereas BIC

tends to identify the main drivers of complex relationships

(Link & Barker, 2006). We assessed each model’s strength of

evidence relative to the entire model set by calculating relative

model weights (wAICc and wBIC). We used the percentage of

deviance explained (DE) to quantify each model’s goodness-

of-fit.

We also applied a 10-fold cross-validation using 1000

iterations to assess the mean prediction error of the model that

maximized DE for 10% of the observations that were randomly

selected and left out of the training data set. We assessed the

predictive power of the models according to Cohen’s Kappa

statistics j that measures agreement/accuracy (Cohen, 1960)

and varies from £ 0 for no agreement between observed data

and hypothetical probability to 1 when perfect agreement

occurs. Following Woodby et al. (2009), we considered that a

model had a poor performance when j < 0.4, good when

0.4 < j < 0.75 and excellent when j > 0.75; these ranges were

based on the (j) agreement scale proposed by Landis & Koch

(1977). For each index of model performance, we calculated

the median across the results obtained for each of the 100

replicates of each pseudo-absence data set.

We assessed potential spatial autocorrelation in both

observations and GLM residuals as a function of distance

between sites based on Moran’s I (Diggle & Ribeiro, 2007) after

a Bonferroni correction (Legendre & Legendre, 1998). We used

the spatial correlation structure that gave the best fit to the null

model to define the error covariance matrix in a spatial

GLMM, coding the 1� grid cell as a random effect within each

GLM fitted previously (e.g. Mellin et al., 2010). We fit GLMM

using the penalized quasi-likelihood (Venables & Ripley, 2002)

and derived predictions for the entire area sampled in each

season. We then built prediction maps in ArcGIS 9.2.

Following Araújo & New (2006), we used an ensemble

approach to combine the full range of results obtained by the

different techniques used to account for pseudo-absences. We

weighted the contribution of each model according to its

percentage of deviance explained to build an ensemble

prediction for seasonal distribution of whale sharks in the

Indian Ocean.

Maximum Entropy

We compared GLM results to predictions obtained using a

presence-only modelling technique, MaxEnt (Phillips et al.,

2004, 2006, 2009; Phillips & Dudı́k, 2008), using the software

Environmental drivers of whale shark distribution
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provided by the authors (MaxEnt version 3.3.3e November

2010, AT&T Labs Research, Princeton, NJ, USA).

Maximum Entropy is a tool for generating species distribu-

tion models from presence-only data. This modelling tool uses

covariate data from species presence locations and background

sampling to estimate habitat suitability for the species occur-

rence (for a detailed statistical explanation of MaxEnt, see Elith

et al., 2011).

To make MaxEnt models more comparable to the GLM/

GLMM, we used the same data sets for presences and pseudo-

absences to generate similar models per season with restricted

settings (i.e. we fitted only linear and quadratic features) in

MaxEnt (for details on MaxEnt features options see Elith et al.,

2011). Owing to the functionality of MaxEnt to use presence-

only data, we ran additional models making use of the entire

background where environmental data were available and

allowing the model to use all the features available in the

console: auto features (linear, quadratic, product, threshold

and hinge).

We projected results to the entire area sampled within each

season, using the area under the curve (AUC) to measure

model performance. For models using the same presence and

pseudo-absence data sets, we calculated the Kappa statistic to

compare the results directly to the GLM performance. We

selected the jack-knife test option in all model sets to infer the

relative importance of each variable.

RESULTS

Owing to the uneven fishing effort in each 5� cell within the

area covered by the tuna purse-seine fisheries (e.g. £ 100 days

in the eastern side and ‡ 11,000 days in the western side of the

Indian Ocean; Fig. 1a), the aggregated normalized whale shark

data were used instead of the whale shark sightings alone.

SPUE varied from 2.10 · 10)3 to a maximum of 444 · 10)3 in

each grid cell during the season when most whale sharks were

sighted (autumn), followed by SPUE between 2.45 · 10)3 and

200 · 10)3 in summer, 0.86 · 10)3– 160 · 10)3 in winter and

0. 46 · 10)3– 37.9 · 10)3 in spring.

Sighting (SPUE) patterns of whale sharks shifted between

seasons (Fig. 2); there was a non-random (Kruskal–Wallis

H3 = 33.702; P < 0.001) clockwise shift in relative occurrence

from the Mozambique Channel in autumn, through the areas

around the Equator in the western Indian Ocean in winter,

spreading east in spring and returning to the Mozambique

Channel in summer. We found a strong positive correlation

(Spearman’s q = 0.89) between whale shark SPUE and tuna

CPUE recorded by the same tuna purse fleets. We used the tuna

catch in the 1� resolution data set to weight the probability of

selecting a pseudo-absence in the following analyses, as these

data were available at a much finer spatial resolution.

Seasonal standard deviation of Chl a and its mean value

were highly correlated in all seasons ()0.92 < Spearman’s

q < 0.87; P < 0.001), as well as the distance to the continental

shelf and to the shore (q = 0.9115; P < 0.001), and depth and

distance to the shelf (q = 0.6146; P < 0.001). Even though

distance to shelf is potentially more informative regarding

whale shark distribution than distance to shore, we omitted the

standard deviation of Chl a and distance to the shelf (instead of

standard deviation of Chl a and both distance to shore and

depth) from the list of candidate predictors to construct the

model set with the lowest number of uncorrelated variables.

Figure 2 Seasonal variation in aggregated whale shark (Rhincodon typus, Smith 1828) sightings per unit effort (SPUE, where effort

corresponds to the number of fishing days) in the area of the Indian Ocean sampled by the Indian Ocean Tuna Commission (IOTC) from

1991 to 2007: (a) autumn (April–June): 811 whale sharks recorded (68% of sightings); (b) winter (July–September): 68 whale sharks sighted

(6% of sightings); (c) spring (October–December): 191 whale sharks sighted (16% of sightings); (d) summer (January–March): 115 whale

sharks sighted (10% of total sightings).

A. Sequeira et al.
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Generalized linear and mixed-effects models

The percentage of deviance explained was highest for the

generalized linear model including all environmental variables

in all seasons, irrespective of the technique used for generating

pseudo-absences (Table 1). The highest values were obtained

with random pseudo-absence (57% in autumn and 20% in

summer) and lowest with IDW pseudo-absences (< 15% in all

seasons).

Statistical support (wAICc) was greatest for the model

including all environmental variables as well, but only when

using random and the tuna pseudo-absences in all seasons,

except in spring when removing Chl a increased support using

the tuna data set (Table 1). The top-ranked model according

to wBIC only matched the one that also maximized wAICc in

autumn for the three pseudo-absence data sets (Fig. S4 in

Supporting Information), and in winter and summer when

using random pseudo-absences (Table 1).

Both observations and GLM residuals were spatially auto-

correlated (P < 0.001). The spatial correlation structure that

gave the best fit to the null model varied between the

exponential and spherical, with a shape parameter of 5 or 10,

depending on the method used for generating pseudo-absences

(an example of the resulting Moran’s I plots is shown in Fig. S6

in Supporting Information).

The pseudo-absence data set that provided the best results

also differed between modelling techniques; for example, in

autumn, the highest deviance was explained with random

when using GLM, and with tuna when using GLMM. Percent

deviance explained was generally higher for all GLM in all

seasons. After accounting for the spatial autocorrelation

(Table 3), GLMM using tuna pseudo-absences explained the

highest deviance (25.5% in autumn, 23.7% in summer, 11.1%

in spring and 5.3% in winter).

For each season, predictive maps derived from different

pseudo-absence data sets resulted in similar patterns (Fig. 3),

while greater differences occurred among seasons (Fig. 4).

During autumn, highly suitable areas were concentrated near

the Mozambique Channel and close to shore in the south-

eastern side of the African continent. A shift in habitat

suitability occurred in winter towards the north and central

western Indian Ocean, spreading towards the east in a ‘C’

shape (surrounding the Equator) in spring and stretching from

east to west south of the Equator in summer.

Maximum Entropy

The pseudo-absence data sets derived from the three different

techniques resulted in similar maps in MaxEnt in each season

(Fig. 1). MaxEnt prediction maps were generally consistent

with that predicted by the GLM and GLMM (Fig. 3), except

for spring – where MaxEnt presented the central equatorial

area of the Indian Ocean as the most suitable habitat. Within

Table 1 Summary of generalized linear models relating probability of whale shark (Rhincodon typus, Smith 1828) occurrence to ocean

properties: slope, depth, distance to shore (shore), mean sea surface temperature (SST mean) and its quadratic term (SST mean2), SST

standard deviation (SST SD) and chlorophyll a (Chl a).

Season Autumn Winter Spring Summer

Model wAICc wBIC %DE wAICc wBIC %DE wAICc wBIC %DE wAICc wBIC %DE

Random

Phys + SST var – – – 0.25 0.65 34.04 0.01 0.04 18.00 – – –

Saturated 1.00 1.00 57.05 0.99 0.99 34.97 0.75 0.35 34.72 0.99 0.96 19.88

IDW

Slope – – – 0.05 0.07 0.15 – – – 0.01 0.04 0.20

Depth – – – 0.08 0.09 0.55 – – – 0.04 0.11 1.08

Shore – – – 0.05 0.06 0.11 – – – 0.03 0.07 0.70

SST var – – – 0.21 0.02 4.51 0.20 0.89 11.80 0.25 0.03 3.98

Chl a – – – 0.07 0.07 0.32 – – – 0.04 0.09 0.97

Phys + SST var – – – 0.07 0.00 7.47 0.51 0.01 13.93 0.14 0.07 6.34

Saturated 0.99 0.99 11.88 0.09 – 8.91 0.24 0.00 14.16 0.14 0.00 7.14

Null – – – 0.13 0.60 0.00 – – – 0.02 0.34 0.00

Tuna

SST var – – – 0.06 0.90 17.92 0.00 0.37 22.64 – – –

Phys + SST var – – – 0.26 0.00 20.60 0.66 0.55 27.37 0.45 0.32 18.19

Saturated 1.00 1.00 42.61 0.86 0.08 26.72 0.32 0.05 27.77 0.54 0.10 19.10

Shown for each model are the bias-corrected model evidence based on weights of Akaike’s information criterion corrected for small sample sizes

(wAICc), weights of Bayesian information criterion (wBIC) and the percentage of deviance explained (%DE). Three different methods were used for

generating pseudo-absences: Random, inversely distant to whale shark sighting locations (IDW) and based on total tuna catch (Tuna). Results shown

only for cases where wAICc > 0.001, and values £ 0.1 are shown in italic. Note: slope, depth, distance to shore referred to together as physical variables

(Phys); mean sea surface temperature (SST mean), its quadratic term (SST mean2) and SST standard deviation (SST SD) referred to together as SST

var (SST var).
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the total area sampled, the region likely to be more suitable for

whale shark occurrence in autumn was the Mozambique

Channel, followed by the western equatorial Indian Ocean in

winter, the central area of the Indian Ocean in spring, and

more dispersed, but already including the Mozambique

Channel again, in summer.

The MaxEnt variable importance ranking differed both

among seasons and the pseudo-absence data set used in the

model, while the percent of variable contribution varied

mainly within seasons (Tables 2 and S1 in Supporting

Information). In autumn, the more important variable was

the quadratic term of SST for all techniques, while the variable

with the highest percentage of contribution for the model

results was distance to shore. For both winter and spring, the

highest-ranked variables varied mainly between Chl a (mean),

SST (mean), SST (SD) and the quadratic SST term, while for

summer, depth was an important variable with the highest

percentage contribution.

The jack-knife test identified Chl a (in winter and spring)

and physical variables (in both autumn and summer) as those

with important individual effects in all model sets (Table 2).

The most important single variables were mainly producing

the poorest model results when excluded from the set of

predictors.

Area under the curve obtained with the MaxEnt models was

generally low, varying from 0.574 to 0.721 (Table 2). In all

seasons, the highest AUC values were obtained for models with

the random, followed by tuna pseudo-absences data sets

(around 0.7), while the lower scores were obtained when the

IDW data set was used (below 0.63). k Obtained for MaxEnt

were nearly always less than those obtained from GLM, and

generally higher than those from the GLMM accounting for

spatial autocorrelation (Table 3).

Maximum Entropy models using the full background data

available but with restricted settings, i.e. keeping the features

restricted to linear and quadratic, produced similar results to

the models using random and tuna pseudo-absences in terms of

variables percentage of contribution and permutation impor-

tance (Tables 2 and S1 in Supporting Information). When the

same model was allowed to use auto features, i.e. all the feature

types available, results were somewhat different and mostly only

Chl a (mean) came out as an important predictor (Table 2).

Despite having the highest AUC (> 0.92), the predicted suitable

area seemed to be more restricted with this model set.

MaxEntGLM/GLMM

20°

0°

–20°

Figure 3 Habitat suitability of whale sharks (Rhincodon typus, Smith 1828) in the Indian Ocean during autumn. The prediction maps in the

left panel are derived from generalized linear mixed-effects models, and those in the right panel are derived from Maximum Entropy when

using three different techniques for generating pseudo-absences: (i) randomly (Random), (ii) based on probability weighted by the inverse

distance to whale shark presence locations (IDW to shark) and (iii) by a probability directly weighted by total tuna catch (Tuna catch),

respectively, per row.
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DISCUSSION

Niche-based models provide an alternative means for gener-

ating information about species distributions when conven-

tional sampling methods are expensive, logistically difficult and

produce unreliable results (e.g. when sampling for rare species

- Edwards et al., 2005; Guisan et al., 2006). In the past,

occurrence data for whale sharks have been collected at spatial

scales that constitute only a small part of the animal’s range,

usually within coastal waters where nearshore aggregations

form (Beckley et al., 1997; Meekan et al., 2006; Graham &

Roberts, 2007; Jonahson & Harding, 2007; Rowat et al., 2009).

This analysis of sightings collected by fisheries in the open

ocean provides the first opportunity to predict the pelagic

distribution of this wide-ranging species, even if collected at a

coarse spatial resolution (see Barbosa et al., 2010 on down-

scaled projections derived from low resolution data). The

predictive maps produced by our models revealed a seasonal

shift in whale shark habitat suitability following a clockwise

direction from the south-west Indian Ocean in autumn, to the

central (north and south of the equator) Indian Ocean in

winter and spring, and then back to the southern Indian Ocean

in summer (Fig. 4). Given that our analysis accounted as much

as possible for seasonal differences in sampling effort, this

clockwise shift likely results from seasonal changes in envi-

ronmental conditions, such as variation in temperature, that

seem to be driving whale shark distribution patterns within the

Indian Ocean. Indeed, surface water properties were used

before to explain variation in the temporal distribution

patterns of whale sharks (Wilson et al., 2001; Wilson, 2002;

Sleeman et al., 2007; Cárdenas-Palomo et al., 2010), although

our study is the first to test these hypotheses spatially and by

season at the scale of almost an entire ocean basin.

Sea surface temperature was the main variable affecting the

relative occurrence of whale sharks, with the resulting predic-

tive maps reflecting the ‘C’ shape of the SST patterns (Fig. S3

in Supporting Information). Despite average temperatures

ranging between 23 and 34 �C (Fig. S3 in Supporting Infor-

mation), around 65% of the whale shark sightings occurred

between just 27.5 and 29 �C, and 90% occurred between 26.5

and 30 �C (PathFinder AVHRR – temperatures recorded

during the same weeks whale sharks were spotted). It seems

therefore that whale sharks use only a narrow SST range, which

is in accordance with our hypothesis that a restricted

temperature regime exists for this species, thus justifying the

inclusion of the quadratic term in our models. Whale sharks

appear to avoid high temperatures that might elevate meta-

bolic rates and food requirements, and excessively low

temperatures that limit metabolic function. However, even

though whale sharks used only a small band of averaged

temperatures, these are not exclusive (e.g. Turnbull & Randell,

2006), and they might move outside this envelope for other

reasons such as foraging. Other species have previously been

described as predominantly occurring in a small range of

temperatures, e.g. leatherback turtle (15–33 �C; McMahon &

Hays, 2006), salmon sharks (2–8 �C in winter; Weng et al.,

2005) and white sharks (10–14 �C; Boustany et al., 2002).Our

results are consistent with much of what is known about the

Autumn Winter

SpringSummer

L
at

it
ud

e 
L

at
it

ud
e 

20

−20

0

20

−20

0

40 60 80 100 120
Longitude Longitude 

40 60 80 100 120

0

0.75

0.730.51
 Standard deviation

M
ea

n
 e

st
im

at
e

Probability of occurrence

26.5 ºC isoline

30 ºC isoline

Figure 4 Seasonal ensemble result for whale sharks (Rhincodon typus, Smith 1828) habitat suitability overlayed by sea surface temperature

isolines of 26.5 and 30 �C. Standard deviation of the estimated probability of habitat suitability is shown with fading colours as per figure

legend.
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occurrence of these sharks from finer-scale (km–100s km)

studies of nearshore aggregations in the Indian Ocean (Fig. S7

in Supporting Information). According to Rowat (2007), whale

sharks aggregate off South Africa, Mozambique and Kenya

mainly in summer where our models predicted a relatively

high probability of occurrence. South African and Mozam-

bique aggregations persist into autumn, which is consistent

with our predictions. A higher density of whale sharks between

January and May were also detected by Beckley et al. (1997)

and Cliff et al. (2007) in the far north of the South African

coast. During autumn, there are peaks in whale shark

abundance off Gujarat (India) and Thailand, another obser-

vation that is in accordance with our model predictions

(Theberge & Dearden, 2006 recorded an increase in whale

shark sightings starting in October and peaking in May). Peak

aggregations off Tanzania, Kenya and Seychelles occur in

winter, when our 0.4 probability isoline covers these areas. In

the Seychelles, whale sharks peak in abundance during the

spring and winter (Rowat & Engelhardt, 2007), while in the

Maldives, abundances peak in spring, as our models predict

(Fig. S7 – the 0.4 probability isoline covers the referred

locations in the correspondent seasons). These aggregations are

both consistent with our model outcomes. However, peaks in

abundance of sharks observed off the coasts of Bangladesh and

in the Mozambique Channel in spring could not be compared

to our model outputs because the available data did not extend

to these regions at these times.

Our prediction of the occurrence of whale sharks along the

Madagascar coastline throughout the remainder of the year is

corroborated by opportunistic observations (Jonahson &

Harding, 2007). The Mozambique Channel also has suitable

conditions for whale sharks almost year-round (Pierce et al.,

2010). The presence of sharks in the Channel might be

influenced by series of rotating gyres that spin off sequentially

southwards down into the Channel (DiMarco et al., 2002);

these are thought to entrain tuna and might do the same for

whale sharks. In our models, the high likelihood of whale shark

occurrence in this area was driven mainly by the suitable SST

and/or productivity ranges observed there (we did not have

access to geostrophic current data). However, we found no

strong evidence to explain why the Channel is an important

whale shark habitat, except that Chl a never dropped below

0.1 mg m)3 there (Fig. S2 in Supporting Information).

Generally, we found that SST was a better predictor of whale

shark distributions than Chl a. The latter was used as a proxy

for food availability (zooplankton) for whale sharks, although

trophic links between phytoplankton and zooplankton are not

necessarily direct, strong or immediate. There are likely at least

Table 2 Summary of the Maximum Entropy (MaxEnt) models relating probability of whale shark (Rhincodon typus, Smith 1828)

occurrence to individual ocean properties: slope, depth, distance to shore (shore), mean sea surface temperature (SST mean) and its

quadratic term (SST mean2), SST standard deviation (SST SD) and chlorophyll a (Chl a).

Season Autumn Winter Spring Summer

Random – linear and quadratic features

Top ranked SST mean2 Chl a SST mean Depth

Best/worst Shore Chl a Chl a/SST SD Depth

AUC 0.721 0.701 0.691 0.668

IDW – linear and quadratic features

Top ranked SST mean2 Depth Chl a Depth

Best/worst Depth Chl a Chl a Depth

AUC 0.625 0.574 0.627 0.607

Tuna – linear and quadratic features

Top ranked SST mean2 SST mean2 SST mean Depth

Best/worst Shore Chl a Chl a/SST SD Depth

AUC 0.710 0.673 0.672 0.676

Background – linear and quadratic features

Top ranked SST mean2 SST mean2 SST mean SST mean

Best/worst Depth Chl a SST mean2/shore Depth

AUC 0.928 0.837 0.858 0.843

Background – auto features

Top ranked Chl a Chl a SST mean2 Chl a

Best/worst Chl a Chl a SST mean/Chl a Chl a

AUC 0.961 0.920 0.956 0.928

Three different methods were used for generating pseudo-absences: Random, inversely distant to whale shark sighting locations (IDW) and based on

total tuna catch (Tuna), and results are shown in rows 1–3 when only linear and quadratic features were used. The two last rows show results when

MaxEnt model was given the full background (Background) with covariate data available and varying the feature type used in the model. The jack-

knife test results showing which environmental variable had the highest gain when used in isolation (best) and which environmental variables

decreased the gain the most when omitted (worst) are also shown together with the value obtained for the area under the curve (AUC) test. Only top-

ranked variables according to permutation importance are shown here – the complete table with scores per variable can be seen in the supplementary

material (Table S1 in Supporting Information).
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to be time-lags (and therefore spatial) between peaks of Chl a

and zooplankton (Runge, 1998; Sleeman et al., 2010b). The

filtering effects of zooplankton on algae (sensu Runge, 1998)

suggest that direct measurements of zooplankton abundance

would provide a much better predictor of whale shark

distribution than Chl a per se, which appears to be the case

for filter-feeding basking sharks (Sims et al., 2005). However,

such data are only available over relatively restricted spatial

scales; remote sensing provides the only means by which

estimates of food availability can be obtained at the spatial

scales relevant to oceanic patterns.

Both genetic (Castro et al., 2007; Schmidt et al., 2009) and

satellite tracking data (Wilson et al., 2007; Sleeman et al.,

2010b) indicate a capacity for long-distance dispersal in whale

sharks. Despite no observations of individually identified

(Speed et al., 2007) whale sharks traversing the Indian Ocean

basin, the basin-scale shift in distributions predicted by our

models suggests at least some migratory behaviour at the

individual level, implying that broadscale movements are

possible such that individuals could visit several known

aggregation sites as they follow suitable environmental

conditions among seasons. We identified SST as a key

determinant of whale shark distribution, thus forewarning

that current aggregation locations might shift with a changing

climate.

Our models of seasonal distribution were able to predict

habitat suitability for whale sharks over a more extensive area

than that covered by the sightings/tagging data alone. They can

be used to assess interannual variability in sightings at an ocean

scale. Fluctuating conditions measured at interannual scales

using remote sensing can be used to infer interannual

differences in the probability of occurrence over time and

space outside of our study area. Such results would assist in

predicting how seasonal aggregations might shift over space

and time.

All three pseudo-absence techniques (random, IDW and

tuna) resulted in similar predictive maps for each season.

However, we found major differences among seasons within

each technique, mainly in terms of the regression models’

deviance explained. It should be noted here that because

pseudo-absence locations vary within each model, the resultant

deviance explained and AUC are not directly comparable.

Nevertheless, they are useful to determine how absence

locations influence the models’ results, and we have used

them to weight the predicted probability of occurrence derived

from each model when generating the final ensemble predic-

tion.

Generalized linear models explained the highest deviance for

almost all models, but this approach does not account for

spatial autocorrelation that can lead to an inflated explanatory

power in models of species abundance (Lichstein et al., 2002;

Wintle & Bardos, 2006). The inclusion of a spatial correlation

structure is usually necessary because it likely arises from the

ecological processes that drive population dynamics (Mellin

et al., 2010). Our GLMM approach resulted in lower kappa

statistics and deviance explained by the models. This change in

results is not easy to interpret (Dormann et al., 2007);

however, we contend that the GLMM approach that accounted

for some of the potential spatial bias provides predictions of

higher confidence, as GLM residuals are highly spatially

autocorrelated, confirming that these models are biased.

Our results show that the MaxEnt model can produce

similar prediction maps to those generated by GLM based on

the same input data sets. Being a much easier tool to employ,

MaxEnt is useful to develop species distribution models

quickly that give results analogous to more robust regression

models. It is noteworthy, however, that assessment results

(made here by means of Kappa statistics) were slightly lower

with MaxEnt when compared to GLM. When spatial autocor-

relation is not accounted for (either with MaxEnt or GLMs),

Table 3 Comparison of results for the Maximum Entropy (MaxEnt) and generalized linear (GLM) and mixed-effects (GLMM) models –

where spatial autocorrelation was included for the three pseudo-absence techniques used (Random, IDW and Tuna).

Season Autumn Winter Spring Summer

Model j SD %DE j SD %DE j SD %DE j SD %DE

Random

MaxEnt 0.54 0.02 – 0.57 0.08 – 0.50 0.05 – 0.49 0.06 –

GLM 0.79 0.09 58.0 0.51 0.09 29.5 0.59 0.05 32.8 0.51 0.06 17.7

GLMM 0.36 0.02 23.9 0.04 0.07 1.3 0.00 0.01 0.0 0.22 0.07 6.3

IDW

MaxEnt 0.34 0.03 – 0.10 0.09 – 0.25 0.05 – 0.31 0.06 –

GLM 0.35 0.02 10.9 0.00 0.00 0.0 0.33 0.06 13.3 0.00 0.00 0.0

GLMM 0.21 0.02 4.9 0.17 0.09 10.5 0.26 0.06 2.6 0.07 0.06 8.5

Tuna

MaxEnt 0.64 0.02 – 0.37 0.08 – 0.48 0.05 – 0.43 0.06 –

GLM 0.68 0.02 42.3 0.47 0.08 30.9 0.51 0.05 24.4 0.56 0.56 22.5

GLMM 0.59 0.02 25.5 0.56 0.07 5.3 0.17 0.03 11.1 0.43 0.06 23.7

Shown for each model are the Cohen’s Kappa statistic (j) and its standard deviation (SD). The percentage of deviance explained (%DE) for each

technique (shown for the average model predictions – weighted by wAICc) is also shown for the GLM and GLMM.
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the random method for pseudo-absence selection generally

resulted in better performances. In this context, MaxEnt

models can be used even more efficiently by using the full set of

available covariate data and letting the model randomly select

the points used as ‘pseudo-absences’ (i.e. background). Results

obtained by the runs with the full data set and the linear and

quadratic features gave similar maps and better AUC results.

When the MaxEnt model used all features, the same sort of

pattern in habitat suitability was apparent; however, it

produced much steeper spatial gradients across the region

(Fig. S7 in Supporting Information). This resulted in a reduced

capacity to predict some known whale shark areas of occur-

rence relative to GLM and GLMM predictions (Fig. S7 in

Supporting Information). Additionally, MaxEnt identified

depth, Chl a and SST as the main predictors, which contrasts

somewhat with the support for more complex models using

GLM and GLMM.

The coarse resolution of the input data, the necessity of

relying mainly on surface data from remote sensing (as

opposed to data integrated over all depths exploited by this

species) and the lack of true absences mean that predictions

should be taken only as an index of relative probability of

occurrence. The tuna purse-seine fisheries covered a large area

(172,800 km2), but not all of the Indian Ocean. For this

reason, there is less uncertainty in predictions for the western

than the eastern part of the ocean basin. Additionally, about

70% of the sightings occurred during autumn, making

predictions for other seasons relatively less robust.

There is a growing demand by managers for ecologists to

supply more accurate results on the area of occurrence and

distribution of ecological niches of species. Such data are

fundamental in generating appropriate protection rules for

management strategies (Lehmann et al., 2002; Beger & Poss-

ingham, 2008; Urbina-Cardona & Flores-Villela, 2009). Com-

bining data collected by the Regional Fisheries Management

Organisations with our modelling approach, the timing of

whale shark appearances at specific sites (e.g. at sites where

they are still currently fished) can also be predicted and

subsequently used to examine the drivers of observed popu-

lation trends (Bradshaw, 2007; Bradshaw et al., 2008). Further,

whale sharks are frequently seen with large wounds or scars

clearly derived from collision with boats or ship propellers

(Speed et al., 2008). Predicted areas for whale shark occurrence

could thus be used as input information for management of

shipping routes. In general, understanding the distribution and

migration patterns of whale sharks is an essential precursor to

identify possible mating and breeding areas, and to understand

the potential effects of fisheries and ecotourism on the

probability of the long-term persistence of the species.
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Figure S3 Seasonal sea surface temperature (SST) obtained

from averaged weekly MODIS-Aqua satellite composites at a 9-

km spatial resolution from 2002 to the end of 2007.
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techniques (left: randomly, middle: inversely proportional to

distance from shark locations and right: directly proportional

to tuna catch).

Figure S5 Whale shark (Rhincodon typus, Smith 1828) habitat
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