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INTRODUCTION

Habitat use by mobile predators in both terrestrial
and aquatic ecosystems is often described as a func-
tion of environmental gradients, where individuals
select habitats based on biotic (prey) distributions
and physiologically optimal abiotic conditions (Jaquet

& Whitehead 1996, Corsi et al. 1999, Heit haus et al.
2009, Bradshaw et al. 2004, Wildhaber & Lamberson
2004, Hopcraft et al. 2005, Fukuda et al. 2008, Bar-
nett & Semmens 2012). Understanding the relation-
ship between the movement of marine pre dators and
changes in the environment is vital for predicting the
consequences of habitat degradation, particularly in
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areas of high human impact such as coastal marine
systems (Heit haus et al. 2002, Field et al. 2009).
Sharks are an important predator within the coastal
marine environment and assist in maintaining
ecosystem stability and prey community structure
(Shepherd & Myers 2005, Myers et al. 2007). Move-
ment patterns of sharks have been linked to various
abiotic and biotic gradients such as dispersal from
daytime refuges as light attenuates toward night
(Klimley & Nelson 1984, McKibben & Nelson 1986,
Garla et al. 2006), migrations correlated with sea-
sonal changes in water temperature or prey move-
ments (Heupel & Hueter 2001, Sims et al. 2003, Bruce
et al. 2006, Hussey et al. 2009), tidal associations for
foraging or cleaning benefits (Ackerman et al. 2000,
Campos et al. 2009, Carlisle & Starr 2010, O’Shea et
al. 2010) and temperature associations to maintain
optimal metabolic rates (Morrissey & Gruber 1993,
Economakis & Lobel 1998, DiGirolamo et al. 2012).
Such studies provide valuable insight into habitat
specificity, although they often lack information
relating the physiological response of animals to
changing environmental conditions. Using a combi-
nation of behavioural (i.e. movement) and physiolog-
ical responses can provide a more complete under-
standing of why sharks use particular environments
(e.g. Carey & Scharold 1990, Hight & Lowe 2007,
DiGirolamo et al. 2012).

Because most sharks are ectothermic, there has
been a tendency to focus on water temperature
(Speed et al. 2010) as one of the determining factors
of shark distribution and movement (Hopkins &
Cech 2003, Parsons & Hoffmayer 2005, Sims et al.
2006, Vogler et al. 2008, Froeschke et al. 2010),
although many of these studies also measured other
environmental variables potentially influencing
movements such as salinity, dissolved oxygen and
current flow. An advantage of using temperature to
predict shark movements (as opposed to terrestrial
ectotherms), is that behaviours are more likely to be
sensitive to temperature variation given its influence
on activity, metabolic rates, and oxygen concentra-
tion in water (Beitinger & Fitzpatrick 1979). Indeed,
many aspects of shark physiology are regulated by
temperature (Sims 2003), which might explain fine-
scale movement patterns and the close association
with specific temperature ranges observed for some
species (Simpfendorfer & Heupel 2004, Sequeira et
al. 2011).

Movements to maintain body temperature within
an optimal range can be explained using the hypo -
thesis of behavioural thermoregulation, which states
that fish occupy a thermal niche that maximises

vital rates, such as growth, survival and reproduc-
tion (Crawshaw & O’Connor 1997, Sims 2003, Carl-
son et al. 2004). Some studies provide evidence to
support this hypothesis by showing that sharks
aggregate in warm inshore waters to raise their core
temperatures (Casterlin & Reynolds 1979, Econo-
makis & Lobel 1998, Hopkins & Cech 2003, Sims et
al. 2006). The function of female shark aggregations
during the middle of the day, when water tempera-
tures are at their peak, might serve to increase
embryonic development in gestating individuals
(Taylor 1993, Economakis & Lobel 1998, Hight &
Lowe 2007). However, few studies have demonstra -
ted that free- ranging sharks actively select higher
temperatures to optimise physiological processes
(e.g. Hight & Lowe 2007). A recent study on juvenile
lemon sharks Nega prion brevirostris showed that
individuals actively selected both the warmest avail-
able habitat in the afternoon before selecting cooler-
than- average temperatures during the evening and
early morning (DiGirolamo et al. 2012). The inves -
tigators suggested that this behaviour acts to in -
crease  digestive efficiency, as has been suggested
for other species (Wallman & Bennett 2006, Di Santo
& Bennett 2011).

Previous studies have found a relationship be -
tween shark movement with tide height or currents,
which are generally attributed to foraging choices
(Medved & Marshall 1983, Ackerman et al. 2000,
Campos et al. 2009, Carlisle & Starr 2009, 2010). In
shallow coastal habitats, movements with the in -
coming tide potentially allow leopard Triakis semi -
fasciata and brown smooth hound Mustelus henlei
sharks to exploit areas with abundant benthic prey
otherwise inaccessible during low tides (Ackerman
et al. 2000, Campos et al. 2009, Carlisle & Starr 2009,
2010). Reef-associated sharks and manta rays Manta
birostris have tide-related movement to cleaning sta-
tions, where cleaning was more frequent during ebb
tides (O’Shea et al. 2010). There is some evidence
that moonlight can play a minor role in shark move-
ment, with depth and sightings of some species vary-
ing according to moon phase (Pyle et al. 1996, West &
Stevens 2001, Robbins 2007, Weng et al. 2007). The
presence of white sharks Carcharodon carcharias
appears to be greatest during new moons when they
are aggregating at a feeding site, which might assist
in camouflaging them from their prey (northern ele-
phant seal Mirounga angustirostris; Pyle et al. 1996).

A multi-species reef shark aggregation occurs in
a small bay (~5 km2) at Ningaloo Reef, in Western
 Australia (Fig. 1). This aggregation is comprised pre-
dominantly of adult female blacktip reef sharks
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Carcha rhinus melanopterus, with grey reef C. ambly -
rhynchos, sicklefin lemon Negaprion acutidens and
white tip reef Triaenodon obesus sharks also present.
Spatial and temporal patterns in composition and res-
idency of sharks in this aggregation have been de-
scribed using acoustic monitoring (Speed et al. 2011),
although why sharks congregate in this particular
bay, one of many with similar characteristics along
Ningaloo Reef, remains unknown. Speed et al. (2011)
suggested that it might be used for reproduction due
to observations of courtship behaviour and the pres-
ence of suspected pregnant females; no  foraging be-
haviour or active feeding has been ob served.

The long-term residency and site fidelity of reef
sharks in this bay provide an ideal opportunity for
testing hypotheses on how environmental cues alter
movement patterns. In the first part of our study, we
examined the effects of several environmental vari-
ables (tide height, water temperature, and moon illu-
mination) on total numbers of sharks (all species
combined) over each season. We hypothesised that
(1) water temperature would have the greatest in -
fluence on shark presence at all sites; (2) because
sharks are most common during the daytime at the
aggregation site (Speed et al. 2011), nocturnal occur-
rence should be greatest at sites farther from shore;
and (3) the probability of occurrence should not vary
with tide height at the aggregation site because reef
sharks do not forage with incoming tides here (Speed
et al. 2011), or feed on sedentary benthic inverte-
brates available during high tide. Second, we tested

2 more hypotheses that relate to behavioural ther-
moregulation in adult female blacktip reef sharks: (4)
shark body temperature should be consistently
warmer on average than average water temperature
and (5) sharks should actively select the warmest site
and in doing so elevate their core body temperature.

MATERIALS AND METHODS

Study area

The Coral Bay region lies at the southern end of
Ningaloo Reef Marine Park in north Western Aus-
tralia (23° 08’41’’ S, 113°45’ 53’’ E) (Fig. 1). Our study
area was immediately north of the Coral Bay town-
ship and encompassed Skeleton Bay, a smaller bay-
shore where reef sharks aggregate (Speed et al.
2011). The shallow (1−3 m) lagoon of Skeleton and
Coral Bay contains many small patch reefs and is bor-
dered by fringing reef offshore. It covers an area of
~12.5 km2 (2.5 × 5 km) (Halford & Perret 2009). Also
included within the lagoon are grey reef shark and
manta ray cleaning stations near Asho’s Gap and
Point Maud, respectively (Fig. 1).

Acoustic array and study sites

We fitted sharks with acoustic tags (see next sub-
section) and established an array of 9 VR2w

(VEMCO) recei vers to monitor indi-
vidual movement patterns at Coral
Bay. This array of 9 receivers is part
of the Australian Animal Tagging
and Monitoring System (AATAMS),
which has ~100 re ceivers along Nin -
ga loo Reef coastline and consists of 3
arrays and 3 curtains (www. imos.
org.  au/ aatams). To monitor daily
water temperature fluctuations in re -
lation to shark presence, we attached
temperature mini-loggers (VEMCO)
to 6 receivers that took measure-
ments at 30 min intervals for the
duration of the study (463 d). Loca-
tions of re ceivers and mini- loggers,
depths and detections of re ceivers
are given in Table A1). Within the
receiver array were 4 monitoring
sites: Skeleton Bay, Point Maud, the
Channel and the shark cleaning sta-
tion at Asho’s Gap (Fig. 1). We
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Fig. 1. Coral Bay region showing study sites within Bill’s Bay. Acoustic re-
ceivers (d+), acoustic receivers with water temperature mini-logger (d), reef 
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arranged receivers in Skeleton Bay specifically to
address questions re lating to shark aggregation
 patterns (Speed et al. 2011) and behavioural
thermo regulation, at Asho’s Gap to monitor visita-
tion to the cleaning station, and receivers at the
Channel and Point Maud to monitor northward
movement and use of the lagoon outside of aggre-
gation periods. We range-tested receivers by trailing
a test tag (VEM CO) from a boat or person and tak-
ing GPS locations at known distances; the mean
maximum detection range varied between 220 and
331 m (Speed et al. 2011).

Shark tagging

Over the 3 yr sampling period we tagged 58
sharks with acoustic transmitters, of which 36 were
blacktip reef sharks, 11 were grey reef sharks, 7
were sicklefin lemon sharks, and 4 were white tip
reef sharks (Speed et al. 2011). We caught all sharks
on a handline with baited barbless hooks on the
beach at Skeleton Bay and transported them to a
holding tank using a stretcher. We made a 5 cm
incision anterior to the cloaca, and inserted acoustic
tags coated with beeswax (V13-1H [153dB], V16-5H
[165dB], and V16-5x [165dB]; VEMCO) into the
peritoneal cavity (Heupel et al. 2006). We closed the
incision with dissolvable sutures (Ethicon) and did
not use anaesthetics during the procedure. We also
implanted V16T-5H (165 dB) temperature-recording
tags using the same process above into 5 adult
female blacktip reef sharks to test the hypothesis
that sharks select the study site with the warmest
water temperature to increase their core tempera-
ture. The range of temperature measurements for
these tags was 10 to 40°C, with an accuracy of
±0.5°C (VEMCO 2011). The tagging procedure
from capture to release took on average 12 min
(Speed et al. 2011). We also recorded species, total
length (LT, cm) and sex. All temperature-recording
tags were calibrated using the VEMCO VUE soft-
ware prior to analysis to ensure there were no dis-
crepancies in data interpretation.

Temporal datasets

We calculated the total number of individuals of all
species present at each of the 4 study sites per hour
from detections at the acoustic receivers. We consid-
ered an individual as ‘present’ at one of the sites per
hour if at least 1 detection was received within that

hour. We obtained tide height data from the Govern-
ment of Western Australia Department of Transport
(www.transport.wa.gov. au). Data were recorded
hourly at a tide station in Car narvon (24° 53’ 26’’ S,
113° 39’ 26’’ E). We estima ted tide height for Coral
Bay by subtracting 48 min from each datum. Water
temperature was recorded by mini-loggers at
acoustic receiver stations at 30 min intervals and
averaged for hourly periods at each of the 4 sites
(Fig. A1). We obtained daily moon illumination data
from the US Naval Observatory (www. usno. navy.
mil/ USNO/ astronomical-applications/ data- services/
frac-moon-ill). We adjusted all datasets to Western
Australian Standard Time (UTC +8 h).

Environmental association analysis

We used generalised linear models to determine
the relationship between shark distribution (all indi-
viduals of all species combined) and environmental
variables at each site. Total shark presence/absence
h–1 at each site was the response variable, while
water temperature, tide height, and moon phase
were the explanatory variables. We initially mea-
sured autocorrelation among the data using correlo-
grams (Burnham & Anderson 2002); however, due to
the inherent autocorrelation structure present in our
dataset (presence or absence over time), the assump-
tion of temporal independence was violated. We
accounted for this autocorrelation by using matched-
block sampling with replacement (Carlstein et al.
1998, Politis & White 2004). This method sub-samples
and replaces optimum block lengths from the dataset
that maintain the autocorrelation structure. We re-
sampled blocks of data randomly with replacement
from the original time series and then joined them in
a random order to create the uncorrelated boot-
strapped sample (Carlstein et al. 1998, Politis & White
2004, Patton et al. 2009). The block bootstrap method
is a compromise between preserving some of the
dependence structure and corrupting it by assuming
the data are independent (Carlstein et al. 1998). We
then applied the model-fitting process to 100 boot-
strapped samples and used the median and 95%
bootstrapped confidence intervals (2.5 and 97.5 per-
centiles) of the small sample-corrected Akaike’s
information criterion (Burnham & Anderson 2002)
test statistics: AICc, ΔAICc, wAICc and percent de -
viance explained (%DE) to rank and weight models.
We ran models separately for each site rather than
including ‘site’ as part of an interaction term due to
the large size of datasets.

234



Speed et al.: Behavioural thermoregulation in reef sharks

Behavioural thermoregulation

To test the hypo thesis that adult
female blacktip reef sharks actively
select the warmest site to raise their
body temperature, we examined the
relationship between the number of
‘presence events’ (>1 detection h–1) of
each of the 5 individuals with average
water temperature h–1 at each site.
We used a log10 transformation to
ensure data were approximately
Gaussian and then applied linear
mixed-effects models to assess the strength of the
relationship between average water temperature
and the total number of presence events at each of
the 4 sites (Zuur et al. 2009). A boots trap sub-sam-
pling technique was not necessary to account for
temporal autocorrelation because the mixed-effects
model can include correlation structure directly.
Because of the considerable differences in the num-
ber of presence events among locations, we included
multiple intercepts within some models. Models
were ranked using AICc and wAICc (Burnham &
Anderson 2002).

To assess the extent to which body temperatures
of sharks were determined by water temperatures
in Coral Bay, we averaged daily water temperature
from all 6 mini-loggers and compared these to
average daily body temperatures of the 5 sharks
tagged with temperature sensors in the mixed-
effects models. This should indicate whether shark
body temperatures were consistently warmer than
the surrounding water temperatures, and whether
any bias ob served depended on the temperature
range. Our prediction here is that at lower ambient
temperatures, the difference between shark body
and ambient temperatures should be highest such
that the animals experience a more stable thermal
environment internally. We then calculated the
average difference between the combined body
temperatures of all 5 blacktip reef sharks and
water temperature for each of the 4 sites when
sharks were present. If sharks moved into Skeleton
Bay to warm their core temperatures, we expected
to observe the greatest difference between body
and water temperatures at this site. We also deter-
mined the difference in body temperature among
the 5 adult female blacktip reef sharks while in
Skeleton Bay by calculating the mean hourly tem-
perature for each individual. We did all analyses
us ing the software R (R Core Development Team
2009).

RESULTS

Shark tagging

We tagged all 5 adult female blacktip reef sharks
fitted with body temperature sensor tags during
November 2008; all individuals were between 131
and 144 cm LT (Table 1), which we considered to
be sexually mature on the basis of size (i.e. size at
maturity LT > 95−110 cm) (Last & Stevens 2009)
and the presence of healed mating scars on
pectoral fins and the dorsal surface. One of these
sharks also had a distended abdomen, which sug-
gests it was gravid.

Environmental association analysis

Prior to running the generalised linear models to
test for influences of shark presence with environ-
mental variables, we determined that the optimum
block-size length to be sub-sampled prior to boot-
strapping for each site ranged between 225 and
243 h. Some of the temporal autocorrelation was
maintained within each block sampled for the
response and explanatory variables (Fig. A2). The
model that provided the top-ranked (wAICc ≥ 0.99 at
all sites) fit for all sites was one that included water
temperature as a covariate and season as a factor
(Table 2), and explained most of the deviance
(Skeleton Bay = 17.6%, Asho’s Gap = 3.8%, Point
Maud = 33.9%, and Channel = 54.6%). Further-
more, examination of the coefficients showed that
the presence of individuals increased in summer at
Skeleton Bay (0.8 ± 0.02 SE), Asho’s Gap (0.2 ±
0.04), and at Point Maud (0.5 ± 0.03). We were
unable to estimate coefficients for the Channel due
to a lack of water temperature records during sum-
mer (Dec–Feb 2008/09) (Fig. A1). The models that
included only tide height and moon illumination
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Date                  Tag     Sensor       LT      Temperature        Average body 
tagged                ID           ID         (cm)        detections        temperature (°C)

19/11/2008      14501        T1          131              560                 26.17 (±0.11)
24/11/2008      14502        T2          144             1491                26.98 (±0.06)
20/11/2008      14503        T3          142             1353                26.88 (±0.06)
16/11/2008      14504        T4          134              268                 25.92 (±0.15)
22/11/2008      14505        T5          141             1278                26.76 (±0.07)

Table 1. Carcharhinus melanopterus. Adult female blacktip reef sharks (T1 to
T5) implanted with acoustic tags and temperature sensors. Note: detections
and temperature values are from when sharks were detected in Skeleton Bay 

only. LT: total length. Date: dd/mm/yyyy
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were not ranked highly for any of the 4 sites, which
suggests that tide height and moon illumination
have much less of an influence on shark presence in
Coral Bay than water temperature.

Overall, total hourly presence events (all individ-
uals of all species grouped) were greatest at Skele-
ton Bay and peaked at 14:00 h (Fig. 2A). This coin-
cided with a drop in total hourly presence events at
the Channel site. There were also fewer presence
events during daytime hours at Point Maud than at
night (Fig. 2B). There was a bimodal peak in tag
detections at Asho’s Gap at 08:00 and again at
13:00 h (Fig. 2C), which consisted predominantly in
detections of blacktip reef sharks and grey reef
sharks. In general, blacktip reef sharks and grey
reef sharks were present regularly at all 4 sites;
however, whitetip reef sharks were only present
regularly at Point Maud and the Channel sites,
while sicklefin lemon sharks were mostly present at
Skeleton Bay.

Behavioural thermoregulation

Most (58%) presence events for the 5 blacktip reef
sharks were at Skeleton Bay, when compared to the
other 3 sites (Fig. 3). Furthermore, individuals were
most frequently present at Skeleton Bay between
11:00 and 15:00 h throughout the study (Fig. 3A).
Mean water temperature at Skeleton Bay followed a
similar trend to the presence events and peaked
between 14:00 and 16:00 h. Although sharks were
much less frequently present at the other 3 sites,
weak patterns were still evident. Troughs in shark
presence occurred between 12:00 and 16:00 h at both
the Channel and Point Maud sites, whereas we
observed a distinct peak in presence at Asho’s Gap at
14:00 h (Fig. 3B–D). The model that provided the top-
ranked fit be tween presence events and average
water temperature was the multiple-intercept model
at Skeleton Bay (wAICc = 0.31, %DE = 41.4) (Table 3).
There was also evidence for reasonable fit of the
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Site                                     Model                          k                      LL                         AICc                      wAICc                    %DE

Skeleton Bay     ~1 (Intercept only)                      1              −20006.65                40015.29                  <0.0001                     0.00
                          ~Temp                                         5              −17446.40                34896.80                  <0.0001                  12.80
                          ~Tide                                           5              −19826.76                39657.52                  <0.0001                    0.90
                          ~Moon                                         5              −19971.93                39947.86                  <0.0001                    0.17
                          ~Temp + factor (Season)           6              −16490.87                32991.75                  >0.9999                  17.57
                          ~Tide + factor (Season)              6              −16984.14                33978.28                  <0.0001                  15.11
                          ~Moon + factor (Season)            6              −17096.54                34203.08                  <0.0001                  14.55

Channel             ~1 (Intercept only)                      1              −15243.40                30488.79                  <0.0001                    0.00
                          ~Temp                                         5                −8503.67                17011.34                  <0.0001                  44.21
                          ~Tide                                           5              −15140.22                30284.44                  <0.0001                    0.68
                          ~Moon                                         5              −15242.60                30489.20                  <0.0001                    0.01
                          ~Temp + factor (Season)           6                −6916.86                13841.72                  >0.9999                  54.62
                          ~Tide + factor (Season)              6              −12901.39                25812.78                  <0.0001                  15.36
                          ~Moon + factor (Season)            6              −12876.16                25762.33                  <0.0001                  15.53

Asho’s Gap        ~1 (Intercept only)                      1                −8438.86                16879.73                  <0.0001                    0.00
                          ~Temp                                         5                −8173.45                16350.91                  <0.0001                    3.15
                          ~Tide                                           5                −8376.49                16756.97                  <0.0001                    0.74
                          ~Moon                                         5                −8436.67                16877.34                  <0.0001                    0.03
                          ~Temp +f actor (Season)           6                −8121.76                16253.53                  >0.9999                    3.76
                          ~Tide + factor (Season)              6                −8150.55                16311.10                  <0.0001                    3.42
                          ~Moon + factor (Season)            6                −8147.21                16304.43                  <0.0001                    3.46

Point Maud        ~1 (Intercept only)                      1              −12562.55                25127.09                  <0.0001                     0.00
                          ~Temp                                         5                −8671.16                17346.33                  <0.0001                  30.98
                          ~Tide                                           5              −12428.59                24861.17                  <0.0001                    1.07
                          ~Moon                                         5              −12488.47                24980.93                  <0.0001                    0.59
                          ~Temp + factor (Season)           6                −8297.18                16604.35                  >0.9999                  33.95
                          ~Tide + factor (Season)              6              −10917.56                21845.12                  <0.0001                  13.09
                          ~Moon + factor (Season)            6              −10878.83                21767.67                  <0.0001                  13.40

Table 2. Results of generalised linear models with bootstrap sampling for hourly presence events (all shark species combined)
with environmental variables. Model comparison was based on Akaike’s information criterion corrected for small samples
(AICc). Best model is in bold. For each of the models contrasted: number of parameters (k), maximum log-likelihood (LL), AICc, 

AICc weight (wAICc), and the % deviation explained (%DE) 
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 single-intercept model (Presence ~ Temperature +
Site) (wAICc = 0.22, %DE = 38.4).

The average body temperatures for the 5 blacktip
reef sharks while in Skeleton Bay ranged between
25.92 (±0.15) and 26.98°C (±0.06). The highest body
temperature recorded in Skeleton Bay was 32°C,
while the lowest was 20.6°C. Average hourly body
temperatures while in Skeleton Bay peaked between
16:00 and 18:00 h (Fig. 4). Shark T4 consistently had
the lowest mean body temperature throughout the
24 h cycle; however, it also had the fewest number of
detections overall (268). Similarly, shark T1 also had
relatively low mean body temperatures, particularly
outside of peak temperatures (14:00 to 18:00 h) and
also had relatively few detections (560) compared to
sharks T2 (1491), T3 (1353), and T5 (1278) (Table 1).
The mean body temperatures of Sharks T2, T3, and
T5 were similar through out the 24 h cycle.

We were able to compare body temperatures of the
5 tagged sharks with average water temperature in
Coral Bay (data from all 6 mini-loggers combined)
from 19 November 2008 to 25 February 2010 (463 d).

The slope and intercept model (wAICc = 0.87, %DE =
12.93) was ranked above the zero-intercept model
(wAICc = 0.13, %DE = 13.73) (Table 4). Based on
model coefficients, body temperature of these sharks
was 1.3°C warmer on average than water tempera-
ture (SE ±0.57). There was also no change in this
 pattern with increasing water temperature (slope =
0.99, ±0.02), indicating that body temperature was
always consistently and invariably warmer than
average water temperature.

The greatest difference in water and body tem-
peratures was observed at Skeleton Bay, where the
average body temperature was >1°C (±0.02)
warmer than average water temperature (Fig. 5).
There was also a >0.5°C (±0.01) difference at the
other inshore site at Point Maud, and smaller differ-
ences at sites farther out in the lagoon at Asho’s
Gap (0.27 ± 0.03°C) and Channel (0.03 ± 0.01°C)
sites. The greatest positive difference was recorded
for shark T4 on 26 September 2009 in Skeleton Bay,
where the body temperature was >6°C warmer than
the water temperature.
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Fig. 2. Carcharhinus melanopterus, C. amblyrhynchos, Negaprion acutidens and Triaenodon obesus. Total hourly presence
events (>1 detection h−1) of all reef sharks tagged with acoustic pingers at (A) Skeleton Bay, (B) Channel, (C) Asho’s Gap, and 

(D) Point Maud. Note y-axis scale differences 
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DISCUSSION

Understanding how abiotic and biotic gradients in -
fluence distribution and movement of elasmobranchs
is a necessary precursor for predicting how they

might respond to rising water temperature and
altered salinity regimes associated with climate
change (Field et al. 2009, Chin et al. 2010), thermal
discharges from coastal electrical plants (Vaudo &
Lowe 2006), ocean farming (Papastamatiou et al.
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Model df LL AICc wAICc %DE

Intercept-only (Presence ~ 1) 4 −44.93 97.85 0.00 0.00
Slope-only (Presence ~ Temp) 5 −40.71 91.42 0.00 9.38
Site only (Presence ~ Site) 7 −30.56 75.12 0.03 31.98
Own intercept (Presence ~ Temp + Site) 8 −27.66 71.32 0.22 38.43
Full model (Presence ~ Temp + Site + Temp: Site) 11 −26.16 74.32 0.05 41.77

Multiple intercept models (Presence ~ Temp + Intercepts + Temp × Site)
Skeleton Bay 9 −26.32 70.63 0.31 41.42
Point Maud 9 −27.11 72.21 0.14 39.67
Asho’s Gap 9 −27.53 73.06 0.09 38.72
Channel 9 −27.08 72.17 0.15 39.71

Table 3. Results of the relationship between the presence of blacktip reef sharks Carcharhinus melanopterus and water tem-
perature at each study site based on general linear mixed-effects model comparison based on Akaike’s information criterion
corrected for small samples (AICc). All models include the random effect ‘Individual’. Best model is in bold. For each of 
the models contrasted: maximum log-likelihood (LL), AICc, AICc weight (wAICc), and the % deviation explained (%DE) 

Fig. 3. Carcharhinus melanopterus. Total hourly presence events (>1 detection h−1) of 5 female blacktip reef sharks (T1 to T5)
tagged with acoustic pingers and temperature sensors, compared to average (±SE) water temperature at (A) Skeleton Bay, 

(B) Channel, (C) Asho’s Gap, and (D) Point Maud. Note y-axis scale differences
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2010) and food provisioning by eco-
tourism operators (Laroche et al.
2007, Semeniuk & Rothley 2008, Clua
et al. 2010, Fitzpatrick et al. 2011).
Previous studies of movements and
habitat selection of coastal sharks in
relation to environmental conditions
have focussed on water temperature,
and concluded that it has a major
influence on distribution (Morrissey &
Gruber 1993, Economakis & Lobel
1998, Hight & Lowe 2007, DiGirolamo
et al. 2012). However, few studies
have attempted to study fine-scale
(<10 km2) patterns.

At all 4 of our study sites, shark pre -
sence was strongly correlated with
water temperature and season. This
result, when combined with a pre-
dominance of individuals during the
middle of the day at Skeleton Bay and
an increase in the number of individu-
als during summer, provides further
support for shark movement being
largely driven by water  temperature.
This corroborates previous findings of
shark attendance at Skeleton Bay,
where blacktip reef sharks and grey
reef shark adults displayed diel cycles
of attendance, being most frequent
du r ing summer between 13:00 to
14:00 h (Speed et al. 2011), and a simi-
lar peak in reef attendance patterns

for some grey reef sharks at the Rowley Shoals, atoll
reefs in the far north-west of Australia (Field et al.
2011). We found that these 2 species were more fre-
quently present at the Channel site during periods of
darkness than at Skeleton Bay. This supports the day-
time re fuge hypothesis, where sharks disperse farther
out into the lagoon at night, possibly to forage (Klim-
ley & Nelson 1984, McKibben & Nelson 1986, Garla et
al. 2006, Papastamatiou et al. 2009, Speed et al. 2011).
However, bimodal daytime peaks of attendance at
the reef shark cleaning station Asho’s Gap are per-
haps more closely associated with diurnal  patterns in
cleaning behaviour (O’Shea et al. 2010, Oliver et al.
2011) than changes in water tempe rature.

Inshore daytime aggregations and habitat selection
associated with raised water temperature have been
observed in other species of elasmobranchs such as
leopard shark Tria kis semifasciata, grey reef sharks
(Eco nomakis & Lobel 1998, Hight & Lowe 2007), juve-
nile Negaprion brevirostris (DiGirolamo et al. 2012),
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Fig. 4. Carcharhinus melanopterus. Average (±SE) hourly body temperatures
for 5 female blacktip reef sharks (tags: T1 to T5) implanted with temperature 

sensors at Skeleton Bay

Model k LL AICc wAICc %DE

slope and intercept 5 −1897.88 3805.77 0.87 12.93
(y ~ x)

slope and zero-intercept 4 −1900.79 3809.58 0.13 13.73
(y ~ 0 + x)

Table 4. Comparison results of mean water temperature and mean shark body
temperature contrasted using general linear mixed-effects models. For each of
the models contrasted: number of parameters (k), maximum log-likelihood
(LL), Akaike’s information criterion corrected for small samples AICc, AICc

weight (wAICc), and the % deviation explained (%DE) 

Fig. 5. Carcharhinus melanopterus. Mean (±SE) difference
between average water temperature at each site and aver-
age body temperature of 5 female blacktip reef sharks (all
data combined). Numbers above columns: counts of temper-

ature recordings
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as well as bat rays Myliobatis californica (Matern et al.
2000). Our findings are similar to those of Hight &
Lowe (2007) and DiGirolamo et al. (2012) who found
that the core temperatures of sharks reached their
peak during the afternoon/ early evening and that
these animals showed site fidelity to thermal refuges
during the day before dispersing at night. Hight &
Lowe (2007) hypothesised that T. semi fasciata might
have been aggregating to in crease core body temper-
ature for reproductive reasons, which was also sug-
gested for aggregations of adult female grey reef
sharks (Economakis & Lobel 1998). Another potential
explanation for this behaviour is that individuals
make use of warmer waters to increase their metabolic
rate while feeding and then retreat to cooler water to
slow digestion and evacuation rates, which might aid
in nutrient uptake efficiency (Matern et al. 2000, Carl-
son et al. 2004, Sims et al. 2006, Di Santo & Bennett
2011, DiGirolamo et al. 2012). Evidence to support
both of these hypotheses was provided by a thermal
preference experiment on the Atlantic stingray Dasy-
atis sabina, where pregnant and unfed individuals se-
lected warmer temperatures than non-pregnant and
fed individuals (Wallman & Bennett 2006). We did not
observe any daytime foraging in blacktip reef sharks,
although we have noted courtship behaviour and the
presence of pregnant individuals in Skeleton Bay
(Speed et al. 2011). Therefore, the most plausible ex-
planation is that female blacktip reef sharks use the
increased water temperature of this site to aid in re-
production, possibly by increasing embryonic devel-
opment. However, male blacktip reef sharks and
other species and size classes are also common in this
site, which suggests that higher temperatures might
provide additional benefits for digestion or growth.
For example, movement into warmer water after
feeding has been hypothesised to elevate evacuation
rates for species that feed frequently (‘hunt cool − rest
warm’) (Di Santo & Bennett 2011), and has been sug-
gested previously for captive Carcharhinus mela no -
pterus (Papastamatiou et al. 2007).

The body temperatures of female blacktip reef
sharks while in Skeleton Bay were highest during the
afternoon between 16:00 and 18:00 h, which co -
incided with the maximum average daily water tem-
perature at this site (16:00 h). Furthermore, these in-
dividuals were most often present at this time and
consistently had body temperatures >1°C warmer
than the average water temperature. Matern et al.
(2000) also observed this pattern in bat rays, where
the body temperature of rays in shallow water (<1 m
depth) were always warmer than at other sites, par-
ticularly during the afternoon. They suggested that

this was due to the influence of solar radiation, as was
also suggested for raised temperatures of leo pard
sharks when in shallow areas (Hight & Lowe 2007).
Furthermore, leopard sharks can darken their skin
colour, which might serve to increase heat up take
and in doing so raise metabolic rates (Hight & Lowe
2007). Solar warming might have had the greatest in-
fluence on shark body temperature at Skeleton Bay
due to sharks aggregating in the shallow water of the
bay during midday. Unfortunately, we were unable to
monitor water temperature with mini-loggers close to
shore at the southern end of Skeleton Bay due to the
water level often being <0.5 m, or even completely
dry during spring low tides. However, visual censuses
identified that aggregations were common in this
area of the site (Speed et al. 2011), so it is possible that
water temperature and shark body temperatures are
even higher when individuals aggregate in shallow
water outside of detection range of receivers/mini-
loggers in Skeleton Bay.

Tide height had little influence on the presence of
reef sharks at any site in our study. In contrast, tide
can have an important influence on the movement of
other species (Medved & Marshall 1983, Ackerman
et al. 2000, Dewar et al. 2008, Campos et al. 2009,
Carlisle & Starr 2009, 2010), which seems to be re -
lated mostly to foraging (but see O’Shea et al. 2010).
Because reef sharks are primarily piscivores (Cortés
1999) and we had no evidence of foraging within
Skeleton Bay (Speed et al. 2011), we did not expect to
see an effect of tide height on the presence of sharks
at this site, where foraging opportunities on benthic
invertebrates would be increased with rising tide
height. Our results confirm this hypothesis, and sug-
gest that shark aggregations in Skeleton Bay are not
influenced by tide height. Furthermore, our study
sites were all within the Coral Bay lagoon, and there-
fore largely protected from prevailing currents by the
reef, which is exposed on spring low tides. The daily
tidal range of Coral Bay is small (~1.5 m), and there-
fore tide height appears to have minimal influence on
shark movement patterns, although spring low tides
preclude sharks from entering the shallowest areas
within Skeleton Bay. Moon illumination also had
minimal influence on the presence of reef sharks at
Skeleton Bay.

CONCLUSION

We found evidence that adult female blacktip reef
sharks visit Skeleton Bay during the warmest parts of
the day and season and in doing so elevate their body
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temperatures. This provides support for behavioural
thermoregulation in this species, whereby indi -
viduals are able to increase their metabolic rates
through thermotaxis, possibly for reproductive ad -
van tages. However, the extent to which metabolic
rates chan ges with water temperature (Q10) is still
unknown for this species. Future research should
include a variety of species, over both sexes and dif-
fering size classes, to provide a better overview of
how changes in water temperature influence the
physiology of reef sharks. Furthermore, testing prog-
esterone concentrations in females to assess repro-
ductive status would assist in the classification of
gravid individuals, which might behave differently in
response to ambient temperature fluctuations.
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Appendix 1. Additional data

Station Site Latitude Longitude Depth Receiver Total Mini- Mini-logger
(°S) (°E) (m) deployment detections logger deployment

(dd/mm/yyyy)

Asho’s Gap Asho’s Gap 23.13587 113.7537 9.5 21/01/2008 36 682 Yes 07/04/2008
Maud VR2a Channel 23.12282 113.75152 3 21/01/2008 56 220 No NA
Maud VR2b Channel 23.1246 113.7491 3 21/01/2008 16 214 Yes 07/04/2008
Point Maud Point Maud 23.12137 113.75722 7 18/11/2007 77 653 Yes 07/04/2008
Skeleton South Skeleton Bay 23.13008 113.76998 3 18/11/2007 129 937 Yes 26/08/2008
Skeleton Inner Skeleton Bay 23.12693 113.76896 3 18/11/2007 69 597 Yes 26/08/2008
Skeleton Mid 1 Skeleton Bay 23.12863 113.76971 3 18/11/2007 92 210 Yes 26/08/2008
Skeleton Mid 2 Skeleton Bay 23.12733 113.7688 3 18/11/2007 51 027 No NA
Skeleton North Skeleton Bay 23.12588 113.76782 3 18/11/2007 97 434 No NA

Table A1. Acoustic receiver and water temperature mini-logger information for Coral Bay study sites. NA: not applicable
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Fig. A2. Temporal autocorrelation present within subsampled blocks from the Skeleton Bay dataset. (A) Number of individuals 
(response variable), (B) water temperature, (C) tide height, and (D) moon illumination
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Fig. A1. Presence of water temperature mini-loggers at acoustic receivers in Coral Bay throughout the study. Date: 
(dd/mm/yyyy)
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