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Summary

1. Phenomenological density-feedback models estimate parameters such as carrying capacity (K) andmaximum

population growth rate (rm) from time series of abundances. However, most series represent fluctuations around

Kwithout extending to low abundances and are thus uninformative about rm.

2. Weused informative prior distributions ofmaximumpopulation growth rate, p(rm), to estimate Bayesian pos-

terior distributions in Ricker and h-logistic models fitted to abundance series for 36 mammal species. We also

used state-spacemodels to account for observation errors.

3. We used two data sets of population growth rates from different mammal species with associated allometry

(bodymass) and demography (age at first reproduction) data to predict rm prior distributions.

4. We assessed patterns of differences in posterior means (�rm) from models fitted with and without informative

priors and used the deviance information criterion (DIC) to rankmodels for each species.

5. Differences in posterior �rm from models with informative vs. vague priors co-varied with the prior mean (r̂m)

for Ricker models, but only posterior �h co-varied with prior r̂m in h-logistic models. Informative-prior Ricker

models ranked higher than (81% of species), or equivalent to (all species), those with vague priors, which

decreased to 70% ranking higher for state-space models. Prior information also improved the precision of �rm by

13–45%depending onmodel and prior.

6. Posterior �rm were highly sensitive to r̂m priors for h-logistic models (halving and doubling prior mean

gave�56% and 95% changes in �rm, respectively) and less sensitive for Ricker models (�25% and 35% changes

in �rm).

7. Our results show that fitting density-feedback models without prior information gives biologically unrealistic

�rm estimates inmost cases, even from simpleRickermodels. However, sensitivity analysis shows that high rm � h
correlation in h-logistic models means the fit is largely determined by the prior, precluding the use of this model

formost census data. Our findings are supported by applyingmodels to simulated time series of abundance. Prior

knowledge of species’ life history can provide more ecologically realistic estimates (matching theoretical predic-

tions) of regulatory dynamics even in the absence of detailed demographic data, thereby potentially improving

predictions of extinction risk.

Key-words: density dependence, measurement error, population dynamics, Ricker, state-space,

theta-logistic

Introduction

Mathematical models of the dynamics of density feedback

based on abundance time series, including the Ricker,

Gompertz and h-logistic, give a functional form to the relation-

ship between sequential population size estimates under the

constraints of maximum growth rate and environmental carry-

ing capacity. The estimated strength and type of density feed-

back arising from these phenomenological models influence

projections of population viability and sustainable yield targets

in planned conservation and management interventions,

such as the proportional annual harvest that would lead to

extinction (Holmes et al. 2007; Hone, Duncan & Forsyth

2010). Estimates of the growth response of individual popula-

tions are obtained from fitting stochastic models of density

feedback. However, these models fitted to abundance data

often give biased (Lande et al. 2002; Freckleton et al. 2006),

imprecise and ecologically unrealistic (Polansky et al. 2009;

Clark et al. 2010) estimates of growth response parameters.

Bayesian statistical methods provide an explicit means of

using prior knowledge to inform the estimation of the parame-

ters of ecological models (Clark 2007; McCarthy 2007). Such

information is incorporated into the estimation process

by specifying prior distributions for model parameters

which weight the likelihood function to generate posterior

distributions and can improve the precision of the estimates

(McCarthy & Masters 2005). As an example, allometric and*Corresponding author. E-mail: steven.delean@adelaide.edu.au
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demographic predictions of ecological rates can be used within

a Bayesian setting as independent, a priori distributions.

McCarthy, Citroen & McCall (2008) showed that estimated

allometric scaling exponents for birds and mammals conform

to theoretical predictions and used the corresponding estimates

as Bayesian priors to refine estimates of survival rate.

In population dynamics, the stochastic Ricker model

(Ricker 1975) predicts the population size N (or an index

thereof) at time t as a function of the population size at the pre-

ceding time, the maximum rate of population increase rm and

the population carrying capacity K. Taking Yt = log(Nt), the

model is given as follows:

Yt ¼ Yt�1 þ rmð1� ðNt�1=KÞÞ þ et�1 eqn 1

where et�1 is the process (or environmental) variance (a Gauss-

ian-distributed random variable with mean 0 and variance r2).
This model can be generalised to account for a nonlinear

growth response to changes in population size by adding a

shape parameter h:

Yt ¼ Yt�1 þ rmð1� ðNt�1=KÞhÞ þ et�1 eqn 2

where the growth response, or return tendency, is then

represented jointly by the product of rm and h (Saether et al.

2008; Clark et al. 2010); setting h = 1 gives the Ricker model

(see Fig. 1a in Clark et al. 2010).

These models can be further generalised to account for

sampling errors in the measurement of population size,

which is likely to exist in most real-world monitoring situa-

tions and can bias parameter estimates (Shenk, White &

Burnham 1998; Freckleton et al. 2006). State-space time-

series models can incorporate both observation and process

error (de Valpine & Hastings 2002; de Valpine 2003; Clark

& Bjørnstad 2004). Here, recorded population sizes are

assumed to represent an unobserved ‘true population state’

plus random errors. Process error represents the stochastic

model of temporal variation in the unobserved state vari-

able. de Valpine & Hastings (2002) showed that state-space

estimation in linear, Gaussian-distributed models account-

ing for process and observation error performed better in

recovering the simulated parameters than models that

ignored either process or observation error.

The state-space formulation of the Ricker model for log-

transformed observed population size at time t, log(Nt) = Yt,

can be given as:

Xt ¼ Xt�1 þ rmð1� ðeXt�1=KÞÞ þ et�1

Yt ¼ Xt þ vt
eqn 3

where Yt is equal to the unknown ‘true’ population state Xt

plus random observation (i.e. measurement) error vt, which

can be, for example, Gaussian- or Poisson-distributed. The

unknown population state Xt propagates through time via a

Ricker model that depends on rm, K and random process (e.g.

environmental) error et-1, which is usually assumed to follow a

Gaussian distribution with mean 0 and process variance r2.
Calder et al. (2003) used Gibbs sampling to fit a Ricker state-

space model (as a linear model on the raw abundance scale);

however, the Bayesian framework also allows nonlinear

functional forms of density feedback (Wang 2007) and non-

Gaussian probability density functions. State-space

approaches have been used previously to model the dynamics

of mammal populations (Zeng et al. 1998; Wang et al. 2006),

including using Bayesian estimation (Clark & Bjørnstad 2004).

Bayesian fitting of these models requires specification of prior

distributions for all model parameters, including the initial

population stateX0 (Calder et al. 2003).

Predicting rm and K from the h-logistic model, however,

gives biased and imprecise estimates because of the inherent

trade-off between rm and h (Polansky et al. 2009; Clark et al.

2010), particularly where population abundance fluctuates

around K and thus contains little information about the true

value of rm. Hence, one option is to ‘fix’ the rm parameter

(Saether, Engen & Matthysen 2002) to reduce the negative

correlation between rm and hwhich, without some independent

knowledge of at least one, tends to make estimates of both

parameters ecologically meaningless (Clark et al. 2010). The

rm parameter represents the capacity of a population to grow

under conditionswhere resources are not limiting and competi-

tion is negligible (Sibly & Hone 2002; Savage et al. 2004a),

such that survival and reproduction are maximal. Thus, it can

be estimated directly from demographic data using population

matrix models parameterised with maximum vital rates

(Caswell 2001), or observed abundance counts from popula-

tions at low abundance and where survival and reproduction

are maximal using the Lotka–Euler equation (Kot 2001).

When detailed demographic data are unavailable, a simplified,

two-stage version of Cole’s equation (Cole 1954) using annual

fecundity, age at first reproduction and reproductive life span

(and assuming survival probability = 1) can also be used to

estimate rm, although this approach can overestimate it

(Fagan, Lynch&Noon 2010).

Theoretical relationships between a species’ life history

and rates of population growth can also be used to estimate

rm. There are several examples where allometric relationships

to predict rm have been fitted to data sets on mammals and

other taxa (Fenchel 1974; Caughley & Krebs 1983;

Hennemann 1983; Thompson 1987; Sinclair 1996; McCal-

lum, Kikkawa & Catterall 2000; Duncan, Forsyth & Hone

2007). These theoretical relationships provide the basis for

the allometry of interspecific variation in rm (Savage et al.

2004b), although phylogenetic differences should ideally be

incorporated into predictive models (Duncan, Forsyth &

Hone 2007). Hone, Duncan & Forsyth (2010) showed for

mammals that Cole’s equation accurately predicts field-based

estimates of rm; estimated from age at first reproduction (a),
rm estimates match theoretical predictions (slope = �1)

of the (log10–log10) rm � a relationship. The theoretical slope

of �1 is derived from a rearrangement of the simplified

Cole’s equation where survival in all age classes is fixed at 1

(Duncan, Forsyth & Hone 2007). Hone, Duncan & Forsyth

(2010) recommend using predictions of rm from a over those

estimated from allometric relationships based on body mass

because the former is independent of phylogeny (Duncan,

Forsyth & Hone 2007).
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We used two data sets of population growth rates with asso-

ciated allometry (body mass; 44 species) and demography (age

at first reproduction; 64 species) variables to develop predictive

models of maximum population growth. To assess the useful-

ness of this prior information, we used these independent prior

distributions for rm in a Bayesian framework to estimate

posterior distributions of the parameters in the Ricker and

h-logistic models fitted to population time series for 36 mam-

mal species. While Bayesian state-space models that account

for observation error in the abundance counts have been used

previously to investigate the dynamics of mammal popula-

tions, ours is the first to incorporate independent prior infor-

mation about maximum population growth (including

uncertainty) into the estimation of density-feedback model

parameters. We hypothesised that accurate prior information

would give rise to more biologically realistic estimates of maxi-

mum population growth for both models, so we compared

posterior estimates from informative prior models with those

from uninformative (vague) prior models. Additionally, we

simulated abundance series from Ricker and h-logistic models

with known parameter values and refittedmodels to these data

to assess the characteristics of time series that resulted in biased

estimates of rm.

We also hypothesised that posterior estimates of rm would

be sensitive to incorrect (i.e. unrealistic) prior information and

were interested in how much the priors affected posteriors for

each model. For example, we expected the prior to dominate

the posterior for the h-logistic model based on previous

research showing high correlation between the rm and h esti-

mates and the generally flat likelihood for thismodel (Polansky

et al. 2009; Clark et al. 2010). Therefore, we assessed relative

changes in posterior means from specifying incorrect relative

to correct priors as a measure of how much (or little) informa-

tion was contained in the data about the rm parameter.

Materials andmethods

DERIVATION OF INDEPENDENT PRIOR INFORMATION ON

RM

We used estimates of rm and body mass (kg) for 44 mammal species

from 13 taxonomic orders reported in Hennemann (1983) to develop

an allometric scaling model to predict rm from body mass. The rm esti-

mates used by Hennemann (1983) were calculated using the Cole’s

equation (Cole 1954). We fitted a linear mixed-effects model to predict

log10(rm) from log10(mass) and included a random effect for taxonomic

order, to account for possible intercept differences associated with phy-

logeny (Blackburn & Duncan 2001; Duncan, Forsyth & Hone 2007).

There was high correlation between observed and predicted rm values

from this model (q = 0�79; model residual diagnostics are provided in

Data S1 and S2).

We compared the predicted mean of the prior distribution, hereafter

denoted r̂m, from the model above with those from an allometry model

(derived using the estimation approach outlined above) based on rm
estimates calculated by Pereira & Daily (2006; as recommended by

Fagan, Lynch & Noon 2010). The r̂m predictions from models that

used rm calculatedwith theCole’s equationwere higher than those from

models using the Pereira & Daily (2006) method; however, the

differences were well within the 95% prediction intervals of r̂m, so no

bias in posterior parameter estimates was expected (see Fig. S1). There-

fore, given the restricted geographical range of the species used to

derive the Pereira & Daily (2006) rm estimates, we instead used those

estimates from Hennemann (1983) as outlined above to ensure more

generalised predictions.

Following the recommendation of Hone, Duncan & Forsyth (2010)

regarding the preferred use of r̂m predictions from age at first reproduc-

tion over those estimated from allometric relationships, we also used 98

recorded values of rm and the age at first reproduction (a; in years) from
64 mammal species from 10 taxonomic orders, as reported in Duncan,

Forsyth & Hone (2007), to develop a model to predict r̂m from a. The
rm values were, in this method, estimated from observed counts by

modelling the trend in log10 abundance (Eberhardt, Simmons & Press

1992). We fitted a linear mixed-effects model to predict log10(r̂m) from

log10(a) and included a random intercept effect for taxonomic order to

account for phylogenetic differences (Duncan, Forsyth & Hone 2007;

although these turned out to be small, see Results). Some species had

multiple field estimates of rm, so we also included a random intercept

effect in the model to account for among-species differences. There was

high correlation between observed and predicted rm values from this

model (q = 0�99; model residual diagnostics are provided in Data S1

and S2).

TIME SERIES OF MAMMAL ABUNDANCE

To assess the effect of incorporating prior knowledge of rm determined

from the models described previously, we fitted Ricker and h-logistic
models to the abundance time series of 36 mammal species extracted

from a set of 99 high-quality series identified in Clark et al. (2010),

which were in turn a subset of 1198 time series (all taxa) used in Brook &

Bradshaw (2006). The 36 mammal species represented the orders rod-

entia, carnivora, lagomorpha, artiodactyla and sirenia, and ranged

between 0�02 and 750 kg in body mass and 0�33 to 5 years for age at

first reproduction (see Table S1). The filtering criteria retained series

with >18 transitions and excluded those with long series of low counts

and those which included duplicate series from multiple species in the

same study (Clark et al. 2010). We also excluded abundance values

outside a 10-fold range of abundance and those series with many miss-

ing values (Clark et al. 2010).

We used themodels described previously to predict rm from themean

body mass and age at first reproduction of the 36 mammal species. We

calculated prediction variance by accounting for both between-order

and residual sources of variation for the allometry case and also incor-

porated the sum of the variance among taxa and among species for the

demography case.We used themean and variance of the allometry and

demography predictions for each species to parameterise Gaussian

prior distributions for rm, p(rm), in Bayesian formulations of the Ricker

and h-logistic models.

ESTIMATING MODEL PARAMETERS USING VAGUE AND

INFORMATIVE PRIORS

Wefitted theRicker and h-logistic models under a Bayesian framework

usingMarkov chainMonte Carlo (MCMC) simulation. We first mod-

elled the log population abundance Yt = log(Nt) using process error-

only Ricker and h-logistic models that assumed the process variance (e)
was Gaussian-distributed with mean 0 and variance r2 (eqns 1 and 2).

We also fitted hierarchical state-spaceRicker (SS-Ricker) and h-logistic
(SS–h-logistic) models that assumed the same process variance (e) as
above for the underlying ‘true’ population stateXt (eqn 3).Observation
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errors were modelled as a log-Gaussian distribution and hence

Gaussian on the log scale (eqn 3). A small number (< 2%) of missing

observations in some time serieswere imputedusing linear interpolation

(values before and after themissing value are joined linearly).

We fitted the Ricker and h-logistic models, and the state-space SS-

Ricker and SS–h-logistic models, to each species. For model fitting, we

ran eachMCMC chain for 100 000 iterations with an initial burn-in of

2000 iterations and thinned chains by retaining parameter values from

every 10th iteration to reduce the influence of any autocorrelation. We

used the resulting 9800 values of eachmodel parameter to generate pos-

terior distributions. In an attempt to minimise the time to convergence

of the MCMC chains, we set initial parameter values using the maxi-

mum likelihood estimates from the Ricker model (an initial h = 1 was

used for the h-logistic model). We ran two chains with different initial

values (i.e. perturbed maximum likelihood estimate values) to ensure

adequate mixing and that posterior distributions were independent of

starting values (results not shown). We assessed convergence to a sta-

tionary distribution using Geweke scores (Geweke 1992) and by visual

inspection of the traces retained (after burn-in and thinning) for each

model parameter to ensure adequate mixing.We summarised posterior

distributions of the unknown parameters by their means and standard

deviations; themean of the posterior distribution is hereafter denoted �rm.

We fitted Bayesian models using the adaptive random walk

Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings

1970) for MCMC sampling as implemented in PyMC 2�1 (Patil,

Huard & Fonnesbeck 2010; http://pypi.python.org/pypi/pymc). In

this implementation, new parameter values are proposed according

to a random walk at each iteration of the algorithm, and the scale

of the proposal distribution is adapted according to the recent

acceptance probability for each parameter. We used an adaptive

Metropolis step method that block updated variables using a multi-

variate Gaussian covariance matrix to sample jointly the rm and h
parameters of the h-logistic models; this approach accounted for the

correlation between these parameters in model fitting. Our approach

is an implementation of the adaptive algorithms proposed by Wang

(2007). We also used the adaptive Metropolis algorithm to sample

the correlated ‘population state’ variables in the state-space models.

We summarised sampling chains and did all other analyses using

R-2.12.1 (R Core Development Team 2011; www.r-project.org).

Example code for fitting the Ricker state-space model in PYMC and

OPENBUGS is provided in the Data S2.

We specified uninformative uniform prior estimates for the rm, h and
K parameters, although these were better described as weakly informa-

tive or ‘vague’ priors because they had a lower bound of zero, and the

upper limit for the prior on K was set as the maximum observed Nt in

the time series. We arbitrarily set the upper limit of the rm and h uni-

form priors to 20, although exploratory analyses showed posterior �rm
were insensitive to variation of this upper bound over a wide range

(results not shown).

We specified an informative prior distribution p(rm) for each species

using a Gaussian distribution with mean equal to the allometric or

demographic prediction of r̂m and the precision of the distribution

equal to the inverse of the r̂m prediction variance described previously.

We compared two prior distributions for the observation and process

standard deviation parameters: (i) an uninformative uniform prior (0,

10) as suggested for variance components by Gelman (2006) and (ii) an

uninformative inverse gamma prior (a = 0�001, b = 0�001). The esti-

mated process standard deviation was insensitive to the choice of prior,

so we present only results based on the inverse gamma prior.

We used the deviance information criterion (DIC; Spiegelhalter

et al. 2002) to compare the bias-corrected explanatory power ofmodels

fitted using MCMC. Specifically, we used DIC to compare models

using vague priors with those based on informative priors, and between

models using different informative priors, to assess whether prior infor-

mation improved model fit or which prior prediction was more consis-

tent with the data. Informative prior distributions reduce the effective

number of parameters andmodel complexity (Spiegelhalter et al. 2002)

such that DIC will be lower if prior distributions do not reduce model

fit (McCarthy & Masters 2005). We assessed the DIC assumption of

multivariate normality of the joint posterior distribution of the

unknown parameters (Spiegelhalter et al. 2002) by visual inspection of

the bivariate posterior densities of the parameter MCMC traces (see

Figs S22–S24).

SIMULATIONS TO DEMONSTRATE EFFECTS OF USING

INFORMATIVE PRIORS

To assess further the influence of prior information about rm on model

parameter estimates, we simulated abundance time series using the

Rickermodel with known rm values and log-Gaussian errors.We simu-

lated 30 time series of length 25 with each combination of low (0�2) and
high (1�5) rm and low (0�05) or high (0�3) standard deviation of log

abundance. The standard deviation values represent low and high vari-

ation observed for the real abundance series used above. In all cases, we

setK = 100.

Similarly, we simulated abundance series under the h-logistic model

(again, with log-Gaussian errors) using all four combinations of

rm = 0�2 or 1�5 (consistent with the Ricker model simulations) and

h = 0�5, 1�5 (corresponding to species with low and high threshold–

density feedback responses, respectively). We simulated data for these

rm � h combinations under either low (0�05) or high (0�3) standard
deviation of log abundances as above.

We then refitted the Ricker and h-logistic model assuming log-

Gaussian errors to each time series generated under the same model

specifying either vague or informative priors for the rm parameter. We

used a uniform distribution (over the interval 0–20) for the vague prior.

We used a Gaussian informative prior with mean equal to the generat-

ing value of rm in the simulations and standard deviation equal to 10%

of the generating value.

To examine the influence of assuming an incorrect form for the prob-

ability density of the modelled errors, we also simulated 30 abundance

time series from the Ricker model with errors drawn from the negative

binomial distribution for each combination of low (0�2) and high (1�5)
rm and low (10) and high (50) k (lower k represents greater overdisper-

sion). For the abundance series simulated from the negative binomial

distribution, we refitted Ricker models assuming the same error distri-

bution and models assuming log-Gaussian errors and compared the

results of using vague and informative priors to the estimated rm values.

Themain simulation results are presented asData S1 and S2.

Results

INFORMATIVE PRIORS BASED ON ALLOMETRY AND

DEMOGRAPHY

Differences in posterior �rm from using an informative vs. a

vague prior depended on the value of the prior r̂m itself

(Fig. 1, Table 1a). For the Ricker model, larger r̂m priors

increased posterior �rm relative to a model using vague priors,

whereas low r̂m priors decreased the posterior �rm (Fig. 1a,b;

Table 1a), and these results are supported by simulations
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Fig. 1. Scatter plots of informed prior estimates of maximum population growth rate (prior rm) and model-estimated posterior �rm (posterior rm) for

36 mammal species (filled circles; a–b Ricker model, c–d SS-Ricker state-space model). Informative prior distributions p(rm) were predicted from

independently derived relationships with body mass (allometry; a and c) and age at first reproduction (demography; b and d). The dashed line indi-

cates a 1 : 1 relationship between the prior and posterior �rm. Vertical lines show the change in �rm estimated from a model with an uninformative

(vague) prior (9) to �rm estimated using an informed prior (filled circles). Due to some equal prior values of r̂m predicted fromdemography data, filled

circles in the right column of plots were jittered a small amount in the x-space to aid visualisation.

Table 1. (a) Correlation between r̂m prior and difference between posteriors using vague and informative priors, and (b) per cent change in precision

(CV, coefficient of variation) of posterior �rm from using vague vs. informative priors for each model and type of prior. 95% confidence intervals are

in parentheses

Parameter Model Prior type (a) Correlation (b)%difference inCV

�rm Ricker Allometry 0�47 (0�17, 0�69) 12�9 (6�1, 19�8)
Demography 0�62 (0�37, 0�79) 18�4 (9�6, 27�2)

SS-Ricker Allometry 0�55 (0�27, 0�75) 20�4 (12�7, 28�1)
Demography 0�70 (0�48, 0�84) 26�1 (18�2, 34�0)

h-Logistic Allometry �0�24 (�0�52, 0�10) 31�4 (23�1, 39�7)
Demography �0�06 (�0�38, 0�27) 37�2 (29�8, 44�6)

SS–h-Logistic Allometry �0�01 (�0�34, 0�32) 44�0 (37�6, 50�5)
Demography 0�18 (�0�15, 0�48) 45�1 (39�3, 50�9)

�h h-Logistic Allometry �0�42 (�0�66,�0�10) 27�8 (22�4, 33�2)
Demography �0�43 (�0�67,�0�12) 28�3 (21�6, 35�0)

SS–h-Logistic Allometry �0�31 (�0�58, 0�02) 23�4 (13�4, 33�3)
Demography �0�35 (�0�61,�0�03) 16�3 (4�9, 27�6)
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(Fig. S4). A similar pattern was evident for posterior esti-

mates from the SS-Ricker model (Fig. 1b,c; Table 1a). These

results were consistent for both allometric and demographic

predictions of r̂m. Under Bayes’ rule, the joint posterior is

proportional to the product of the prior and the likelihood.

We compared the difference in �rm from using an informative

vs. a vague prior with the difference between the prior r̂m
and the posterior �rm from a model with vague priors. The

difference in �rm due to the alternative methods of generating

priors was generally much smaller than the difference

between the prior r̂m and the vague prior �rm and was not

correlated with the r̂m prior used, indicating that the prior

was not dominating the modelled data (Fig. S16).

Both allometry and demography priors provided more par-

simonious fit to the data for the Ricker model (81% of species;

Fig. 2a), although the improvement was not substantial, given

the DIC difference was within two units (i.e. the models were

statistically indistinguishable). Simulations showed that infor-

mative-prior Ricker models were always ranked highest for

abundance series with high standard deviation, but not for ser-

ies with low standard deviation (Fig. S5), independent of the

size of generating rm. Neither the allometry- nor demography-

based prior provided a consistently better fit across species

(allometry was better in 47% of species; Fig. 2a). Differences

inDIC betweenmodels with andwithout informative rm priors

were distributed around zero for the SS-Ricker models

(Fig. 2b); themodel using an informative prior gave a better or

similar fit for 72% (allometry) and 70% (demography) of spe-

cies. Generally, models using the demographic predictions of

r̂m (and variance) as prior information gave an equivalent or

better fit than those using the allometric predictions (64% of

species; Fig. 2b). With the exception of the consistently lower

DIC for informative-prior Ricker models relative to vague

prior models, there were no obvious trends in DIC differences

associated with the value of the prior (Fig. S14) for the other

models. For all species, the state-space models, which

accounted for observation errors in the abundance counts, had

higher support from the data (based onDIC) than single error-

term models (Tables S2–S37). This indicates evidence for

substantive variation associated with measurement errors in

the abundance counts or poor model fit when these errors are

ignored.

In general, the h-logistic model, when specified with vague

priors, did not converge to a stable solution, due mainly to

the previously noted high correlation between the rm and

h parameters (Clark et al. 2010). Therefore, comparing

h-logistic parameter estimates from vague prior models with

those using informative priors was not meaningful. In con-

trast, SS–h-logistic models fitted to the data with only vague

priors did converge. In these cases, the informative prior

information did not consistently result in a better model

(based on DIC), but the fit of models for 36% (allometry

prior) and 53% (demography) of species was better than the

vague prior models (Fig. 2c). Also, neither type of prior

(i.e. allometry vs. demography) was consistently better than

the other (demography prior better in 56% of species). The

equivocal results for model improvement from using prior

information in the SS–h-logistic models might have been due

in part to skewness in the marginal distributions of the rm
and h posteriors from the vague prior model fits (see

Figs S22–S24), which violates the assumption of DIC that

the joint posterior distribution be multivariate normal (Spie-

gelhalter et al. 2002), although this suggestion requires fur-

ther examination. Under simulation, we showed that

including informative priors increased precision of posterior

rm and (i) increased positive bias, but did not change the pre-

cision of posterior h when rm was low, and (ii) negatively

biased, but increased the precision of posterior h when rm
was high (Figs S6–S9). Despite this, the DIC consistently

supported the vague prior models for both low- and high-

(a) (b) (c)

Fig. 2. Box plots of the distribution of differences in the deviance information criterion (DIC) between models using informative vs. uninformative

(vague) prior distributions for rm in the Ricker (a and b) and h-logistic (c) models. Plots b and c show results fromGaussian state-space (SS) models.

Informative prior distributions p(rm) were predicted from independently derived relationships with body mass (allometry) and age at first reproduc-

tion (demography), and DIC differences between models using these different prior predictions are also shown (‘Allom-Demog’). Negative DIC

differences indicate that the model using prior information gave a more parsimonious fit (except for the ‘Allom-Demog’ comparison where negative

DIC indicated the demographic prior information gave a better fit). Horizontal dashed line indicates zero DIC difference (i.e. no net benefit of using

an informative prior).
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variance series, although the differences were much smaller

for the high-variance case (Fig. S10).

In contrast to the Ricker model, differences in �rm from using

either allometry or demography priors in the h-logistic model

were large and negative and were independent of the value of

the prior for the SS–h-logistic models (Fig. 3a,b; Table 1a).

That is, the h-logisticmodel consistently overestimated �rm rela-

tive to prior knowledge. The influence of the priors was also

evident in the negative correlation between the r̂m prior and

differences in posterior �h from using informative r̂m priors

(Fig. 3; Table 1a; Fig. S17). Smaller r̂m priors tended to result

in increases in �h (highest rate of density feedback occurs at rela-
tively high population size), while larger priors were associated

with decreases in �h (highest density feedback occurs at low

population size; Fig. 3c, d; Table 1a).

CHANGES IN PRECIS ION OF �rm

Informative prior information on rm for the 36 mammal

species we examined improved the precision of posterior �rm by

13–18% for the Ricker model and by 20–26% for the SS-Rick-

er models (Table 1b; Fig. S3). Improvements in precision of

�rm from using demography priors were more marked than

those using allometry priors for all models (Table 1b); preci-

sion was higher for 86% of species using the allometry prior

and 89%of species using the demography prior. In addition to

differences in �h in response to r̂m priors, the precision of �h also
increased by 16–28% (Table 1b; Figs S8–S9). The coefficient

of variation for �rm was higher when estimated using the h-logis-
tic model relative to the Ricker, indicating again the effect of

the rm � h correlation.
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Fig. 3. Scatter plots of informed prior estimates of maximum population growth rate (prior rm) andmodel-estimated posterior �rm (a–b) and poster-

ior �h (c–d) for 36 mammal species (filled circles) using the SS–h-logistic state-space model. Informative rm priors were predicted from independently

derived relationships with body mass (allometry) and age at first reproduction (demography). The dashed line indicates a 1 : 1 relationship between

the r̂m prior and posterior �rm. Vertical lines show the change in posterior (�rm in a–b, �h in c–d) estimates from amodel with an uninformative (vague)

prior (9) to posteriors estimated using an informed prior (filled circles). Due to some equal prior values of rm predicted from demography data, filled

circles in the b and dwere jittered a small amount in the x-space to aid visualisation. Posterior �h frommodels using informative priors p(rm) were neg-

atively related to the informativemean prior r̂m; lower prior r̂m lead to increased posterior �h, whereas higher prior r̂m lead to decreased posterior �h.
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The prior estimates of r̂m predicted from allometry and

demography were, on average, less precise than the �rm from

the Ricker and SS-Ricker models based on vague priors

(Table S38). However, the precisions of posterior �rm from

using informative priors were higher than from vague prior

models. In contrast, the priors were more precise than the pos-

terior �rm estimates from the SS–h-logistic fitted with vague

priors (i.e. negative difference in precision; Table S38). For this

model, using priors improved the precision of posterior �rm,

resulting in approximately equal precision to that of the prior

(Table S38).

SENSIT IV ITY ANALYSIS OF �rm TO THE PRIOR

To assess the sensitivity of �rm to the values of the allometric

and demographic priors used, we arbitrarily refitted all infor-

mative-prior models using mean r̂m priors both half the value

of the original prior and double the value of the original prior.

We then used these ‘deflated’ and ‘inflated’ priors to assess the

bias in �rm from using an incorrect prior for each species (the

variance of the prior for each species was held constant in all

cases). For the Ricker model and using either an allometry or

demography prior, halving the prior r̂m decreased posterior �rm
by about 22%, whereas doubling the prior increased posterior

�rm by about 18% (Table 2; Figs S18 and S19). The effects were

slightly larger for the SS-Ricker model where halving the prior

decreased �rm by about 25% and doubling the prior increased

�rm by 35%on average (Table 2; Figs S18 and S19).

The �rm estimate from the h-logistic model was substantially

more sensitive to themagnitude of the prior than for theRicker

model. Using the h-logistic model, halving the prior decreased

�rm by about 41% and doubling the prior increased �rm by 79%,

whereas for the SS–h-logisticmodel halving the prior decreased

�rm by about 56% and doubling the prior increased �rm by 93%

(Table 2; Figs S20 and S21). Thus, for the h-logistic models,

halving or doubling the prior nearly halves or doubles poster-

ior �rm, such that the posteriors are almost completely deter-

mined by the prior itself. Given the relatively large prediction

variance associated with our informative priors (see Table S1),

these results show there is little information about rm in the

data when fitting a h-logistic model. Also, there is an inverse

relationship between the factor differences in posterior �rm and

the factor differences in posterior �h, with halving and doubling

the r̂m prior resulting in c. 55% increases and 40%decreases in

posterior �h, respectively.

Discussion

The two approaches we used to predict r̂m – from allometry

and demographic rates – both provided informative priors that

generally improved model fit and increased the precision of �rm
for the Ricker model. For the h-logistic model, �rm were gener-

ally overestimated in the absence of prior information; how-

ever, sensitivity analysis showed that �rm was almost entirely

determined by the prior. The high rm � h correlation (Saether

et al. 2008; Polansky et al. 2009; Clark et al. 2010) means that

the prior also constrains �h. These results suggest that, where

available, prior knowledge of the estimated maximum rate

of population increase should be incorporated into density-

feedback models, but that their effects on posterior estimates

should be carefully assessed (especially for full h-logistic predic-
tions). For census data that are uninformative about rm (e.g.

where population sizes in a time series do not extend to low

numbers relative to K), there are many possible combinations

of Ricker model parameters that will fit the time series almost

equally well, and the rm � h correlation makes this problem

muchworse for the h-logistic model.We have shown that inde-

pendent prior distributions informed by demographic data can

provide estimates of �rm from phenomenological models that

are consistent with life-history expectations, a result aligned

with previous studies in fisheries (Myers, Bowen&Barrowman

1999;McAllister, Pikitch & Babcock 2001). In contrast to sim-

ply (and arbitrarily) fixing the value of rm in the fitted model

(Saether et al. 2008) to constrain the estimates of other model

parameters (e.g.K and h) based on themean prior r̂m, Bayesian

priors are preferable because they incorporate uncertainty in

the prior information explicitly and directly into the analysis,

and the resulting posterior distributions provide estimates of

precision. Simple parameter fixing cannot achieve this.

Table 2. Sensitivity analysis results

Para

meter Model Prior type Prior

Proportional

difference

�rm Ricker Allometry Half 0�78 (0�76, 0�81)
Double 1�18 (1�15, 1�21)

Demography Half 0�77 (0�73, 0�81)
Double 1�19 (1�16, 1�23)

SS-Ricker Allometry Half 0�76 (0�72, 0�79)
Double 1�33 (1�21, 1�46)

Demography Half 0�74 (0�71, 0�78)
Double 1�38 (1�18, 1�61)

h-Logistic Allometry Half 0�60 (0�56, 0�63)
Double 1�74 (1�64, 1�84)

Demography Half 0�58 (0�55, 0�62)
Double 1�83 (1�76, 1�90)

SS–h-Logistic Allometry Half 0�58 (0�54, 0�62)
Double 1�87 (1�75, 2�00)

Demography Half 0�55 (0�52, 0�58)
Double 1�98 (1�87, 2�10)

�h h-Logistic Allometry Half 1�50 (1�40, 1�60)
Double 0�61 (0�58, 0�66)

Demography Half 1�56 (1�46, 1�67)
Double 0�57 (0�53, 0�61)

SS–h-Logistic Allometry Half 1�55 (1�38, 1�73)
Double 0�56 (0�48, 0�66)

Demography Half 1�68 (1�47, 1�92)
Double 0�55 (0�47, 0�65)

Proportional differences in �rm and �h estimates after halving and

doubling the prior r̂m relative to estimates using the correct informa-

tive prior (from allometric or demographic predictions) for each

model and type of prior. Proportional differences indicate the sensitiv-

ity of the posterior estimates to the prior; differences > 1 indicate the

prior increased the posterior relative to estimates using the known

informative prior, and differences < 1 indicate the prior decreased the

posterior. 95% confidence intervals of the proportional differences in

parameter estimates resulting from using informative priors are in

parentheses.
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The direction of the effect of informative priors on posterior

�rm from Ricker models were consistent with that expected

under the ‘slow–fast’ life-history gradient that scales with body

size. That is, lower �rm are predicted for larger, slower-breeding

species. Such predictions have been used to justify the applica-

tion of the nonlinear h-logistic model (Gilpin & Ayala 1973)

for explaining density feedbacks; organisms with slower life

histories should be unaffected by density feedbacks below

some threshold abundance and beyond which they become

influential, whereas faster species should respond quickly to

small increases in competition through increased abundance,

with relatively less influence as carrying capacity is approached

or exceeded. Our results showed that �rm from theRickermodel

without informative priors were underestimated for species

with higher prior r̂m and overestimated for species with lower

prior r̂m. Thus, the direction of change in �rm from using prior

information was consistent with expectations from life-history

theory.

Models fitted to data that are uninformative about rm also

produce highly imprecise parameter estimates (Clark et al.

2010). Despite the high variance associated with the r̂m priors

used in this study, the prior information substantially

improved the precision and ecological realism (in terms of

agreement with theory) of parameter estimates. More precise

prior information, relative to the amount of information in the

data about a parameter, will have a greater contribution to the

posterior estimate of any parameter (McCarthy & Masters

2005). The allometric and demographic r̂m priors we used were

predictions from mixed-effects models for new species where

only the body mass or age at first reproduction was assumed

known. Thus, the prediction variances incorporated uncertain-

ties arising from both parameter estimation and stochastic var-

iation associated with the random terms in the model. For

allometric r̂m predictions, between-order and residual

between-species variationwere the random effects contributing

to the variance of predictions. Because we had multiple field-

based values of rm from the same species used to predict r̂m
from age at first reproduction (Duncan, Forsyth & Hone

2007), predictions from that model included an additional

component of within-species variation (Hone, Duncan &

Forsyth 2010). Consequently, prediction intervals around

these r̂m priors were large, and so caution is recommended for

their use in management decision making (Hone, Duncan &

Forsyth 2010). We expect further improvements in the

precision (and therefore accuracy) of �rm from the Ricker and

h-logistic models if more precise and unbiased prior informa-

tion is available for a particular species (e.g. from field-based

abundance counts of one [or many] recovering population[s]

with unlimited resources, or from detailed, independent demo-

graphic data for life-table analysis). This improved precision is

important for parameterising population and management

models of wildlife dynamics (Hone, Duncan & Forsyth 2010).

For example, application of harvest rate strategies, including

the potential biological removal (Wade 1998) and potential

take level (Runge et al. 2009), are improved by accurate rm
estimates and greater precision facilitates risk analysis of such

strategies.

The h-logistic model estimates of �rm were generally high

and inconsistent with prior understanding of the mammal

species’ life histories. The high sampling covariance between

rm and h thus resulted in an underestimation of �h, particularly
for species with lower prior r̂m. Saether et al. (2008) have

noted that such underestimation might explain the

predominance of lower h values reported controversially

(Doncaster 2006; Ross 2006) by Sibly et al. (2005). Our study

shows that prior information about a species’ maximal rate

of growth can help prevent such underestimation by breaking

down the sampling covariance between these parameters.

Bayes’ rule could also be used to incorporate prior

information, or reasonable assumptions, about population

dynamics for other model parameters such as the carrying

capacity, k, based on the life histories of conspecifics and/or

congeners. Further, theory predicts that ecological carrying

capacity should also scale with metabolic rate and resource

supply (Savage et al. 2004b), so it might be possible to derive

informative priors for K using such predictions. However,

such an approach could be problematic in the absence of

further information about the study population because local

and environmental conditions will influence K and vary over

time. Developing more flexible models that relax the constant

K assumption and incorporate time-varying K dynamics

could prove to be more fruitful than incorporating theoretical

prior predictions of a constant K.

Using a sensitivity analysis, we showed that �rm and �h are

highly dependent on the prior r̂m in h-logistic models, but �rm is

much less sensitive to the prior for Ricker models. Thus, fitting

the h-logistic model without prior information will give

biologically unrealistic �rm estimates in most cases and that,

while using prior knowledge can be useful, the high rm � h
correlation means the fit is largely determined by the prior and

that accurate prior information is necessary even for theRicker

model. Our simulation results show that evenwhen armedwith

accurate priors, the correlation between rm and h constrains

the h-logistic model such that models incorporating priors can

receive lower support than vague prior models. However, the

priors will improve estimates from Ricker models, particularly

for abundance series with higher variance.

Given the relatively large prediction variance associated

with our informative priors, there is little information about rm
in the data when fitting a h-logistic model, a result expected

based on previous studies showing the predominance of flat

likelihoods with this model for most available time series

(Polansky et al. 2009; Clark et al. 2010). The hierarchical

SS-Ricker and SS–h-logistic models accounted for often-

ignored measurement errors in the abundance counts and gen-

erally gave a better fit to the data. In our study, the state-space

Ricker model does not offer any substantial improvement over

the process error-only Ricker model in evaluating the effect of

using prior information. However, without additional

information about the magnitude of observation errors, it is

difficult to determine the relative contribution of environmen-

tal and observation errors to total error, highlighting the

importance of repeated sampling of ecological count data to

quantify observation errors. A proper treatment of this distinc-
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tion is beyond the scope of this manuscript, but the issue of

parameter identification (e.g. separate estimation of variance

components) in Bayesian hierarchical models requires further

investigation.

CONCLUSIONS

Most stochastic census data do not cover enough of the range

of possible population abundances to allow precise parameter

estimation for density-feedback models (Clark et al. 2010).

Informative prior distributions of some model parameters can

potentially alleviate this problem by reducing bias and improv-

ing precision for Ricker-type models. However, the high

rm � h correlation and flat likelihoods observed using the

h-logistic model for most ecological time-series data confirm

that this model should not be used in most cases.We therefore

recommend incorporating prior information on rm into Ricker

models of density feedbacks, but emphasise the importance of

using sensitivity analysis to assess the effect of the prior on

parameter estimates.
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