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Abstract. Population limitation is a fundamental tenet of ecology, but the relative roles of
exogenous and endogenous mechanisms remain unquantified for most species. Here we used
multi-model inference (MMI), a form of model averaging, based on information theory
(Akaike’s Information Criterion) to evaluate the relative strength of evidence for density-
dependent and density-independent population dynamical models in long-term abundance
time series of 1198 species. We also compared the MMI results to more classic methods for
detecting density dependence: Neyman-Pearson hypothesis-testing and best-model selection
using the Bayesian Information Criterion or cross-validation. Using MMI on our large
database, we show that density dependence is a pervasive feature of population dynamics
(median MMI support for density dependence ¼ 74.7–92.2%), and that this holds across
widely different taxa. The weight of evidence for density dependence varied among species but
increased consistently with the number of generations monitored. Best-model selection
methods yielded similar results to MMI (a density-dependent model was favored in 66.2–
93.9% of species time series), while the hypothesis-testing methods detected density
dependence less frequently (32.6–49.8%). There were no obvious differences in the prevalence
of density dependence across major taxonomic groups under any of the statistical methods
used. These results underscore the value of using multiple modes of analysis to quantify the
relative empirical support for a set of working hypotheses that encompass a range of realistic
population dynamical behaviors.

Key words: Akaike information criterion; density dependence; endogenous population dynamics; multi-
model inference; negative feedback; population regulation; strength of evidence; time series.

INTRODUCTION

If density dependence is to be a cornerstone of ecological

theory, a certain burden of proof needs to be satisfied.

—den Boer (1991)

Most biologists accept that density-dependent demo-

graphic processes (or more generally, negative feedback

mechanisms; Berryman 2002) work to regulate natural

populations (Turchin 1999, Lande et al. 2002), at least

under some circumstances (Hixon and Carr 1997). That

said, statistical detection of regulation using population

abundance indices (as opposed to demographic data)

can be problematic. For instance, exogenous (density-

independent) factors may overwhelm endogenous (den-

sity-dependent) processes (Andrewartha and Birch

1954), small sample sizes (i.e., few time steps of

observation relative to the generation length of the

organism being studied) reduce statistical power (Solow

and Steele 1990), and sampling error can affect both

Type I and Type II error rates (Shenk et al. 1998). The

most biologically intuitive means of quantifying regu-

lation (and determining critical mechanistic detail) is by

direct examination of the relationship between density,

realized demographic rates, and environmental covar-

iates (Osenberg et al. 2002). However, a broad-scale

evaluation of the nature and prevalence of population

regulation across many species requires a different

approach, such as meta-analysis of abundance time

series.

Although considerable effort has been given to

developing statistical approaches to detect density

dependence in time series data, no single, superior test

has emerged (Fox and Ridsdillsmith 1995). Classic tests

that fall under the Neyman-Pearson hypothesis testing

(NPHT) framework (e.g., Bulmer 1974, Pollard et al.

1987, Dennis and Taper 1994) determine the probability

that a null (density-independent) model generated the

observed or more extreme data (Johnson 1999), with

density independence rejected if this probability is small

(typically ,5%). Alternative approaches have typically

involved selecting a best model from an a priori set of

candidate density-independent and density-dependent

models, using either the Bayesian Information Criterion

(BIC; e.g., Zeng et al. 1998, Dennis and Otten 2000) or

jackknifed cross-validation (C-V; e.g., Turchin 2003).

In recent years, statistical approaches that attempt to

provide strengths of evidence for multiple working

hypotheses have found favor (Hilborn and Mangel

1997, Burnham and Anderson 2002), based on ideas
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proposed well over a century ago (Chamberlin 1890).

The most-widely adopted method for this multi-model

inference uses information theory based on the Akaike

Information Criterion (AIC; Burnham and Anderson

2002), which employs Kullback-Leibler information as a

fundamental, conceptual measure of the relative dis-

tance of a given model from full reality. Despite its

obvious advantages for examining complex ecological

processes, AIC has rarely been used in studies of density

dependence in time series, except in a few individual case

studies (e.g., Morris and Doak 2002). Bayesian methods

are commonly used for model averaging (Wintle et al.

2003), but are yet to be applied in this way for the

detection of density dependence.

The relative importance of endogenous vs. exogenous

processes on the dynamics of real populations can be

most convincingly settled by empirical means rather

than a priori arguments of logic (Cooper 2001). Here we

build on the work of Turchin and Taylor (1992),

Woiwod and Hanski (1992), Zeng et al. (1998), and

others by undertaking a diverse portfolio of analyses

(AIC, BIC, C-V, NPHT) to evaluate the relative

strength of evidence for density-dependent and density-

independent population dynamics in long-term time

series abundance data from a substantial dataset of 1198

species spanning a broad range of taxa. We demonstrate

that density dependence is a pervasive feature of the

population dynamics of these species, but find no

important differences between the taxonomic groups

(e.g., invertebrates vs. vertebrates).

METHODS

We used a set of high-quality, long-term population

dynamics time series data for 1198 species (one time

series per species) comprising 639 invertebrate, 529

vertebrate, and 30 plant species, and covering a wide

range of taxa, biomes, and life histories (see the

Appendix for the filtering methods and the Supplement

for the species list and data sources). The minimum

length of these time series was eight year-to-year

transitions (q) with a mean duration of 22 transitions.

There are many potential mathematical simplifica-

tions of complex population dynamics. For simplicity

and generality, we used an a priori model-building

strategy to arrive at a set of five population dynamics

models commonly used to describe phenomenological

time series data (Turchin 2003) for the MMI and model-

selection methods (AIC, BIC, and C-V). The set

included two density-independent models (random walk

and exponential growth) and three density-dependent

models (Ricker-, Gompertz-, and h-logistic population

growth). Further details can be found in the Appendix

or by consulting Dennis and Taper (1994) and Sæther et

al. (2002). All models were fitted using maximum-

likelihood estimation assuming process error (hence,

initial population size was not estimated as a separate

parameter). We also separately considered a model set

that included delayed (lagged) density-dependent models

(Turchin 1990).

Our method of multi-model inference used Kullback-

Leibler information to assign relative strengths of

evidence (AICc weights) to each model in the set

(Burnham and Anderson 2002). To compare a more

complex model a to a simpler model b, we employed the

information-theoretic evidence ratio (ER¼AICc weight

of model a 4 AICc weight of model b) to quantify the

relative support of a vs. b, and used the least-squares R2

value to determine structural goodness of fit of model a

(test for model adequacy). For model selection (i.e.,

choosing a single best model) we used both BIC (Zeng et

al. 1998) and C-V (Turchin 2003). For NPHT, we chose

three classic tests: R (Bulmer 1974), randomization

(Ran; Pollard’s et al. 1987), and parametric bootstrap

likelihood-ratio (PBLR; Dennis and Taper 1994).

We examined a number of potential biases regarding

the detection of density dependence (see the Appendix

for full details). We regressed the strength of evidence

for density dependence (complementary log–log trans-

TABLE 1. Seven example species representing major taxa with long-term (�14 years) time series abundance data.

Common name Scientific name Taxon q

AICc model weight
wt DD
(%)RW EX RL GL TL

Whooping Crane Grus americana BIR 57 0.213 0.430 0.146 0.163 0.049 35.8
Grizzly bear Ursus arctos MAM 38 0.524 0.262 0.092 0.095 0.027 21.4
Snapping turtle Chelydra serpentina REP 14 0.451 0.124 0.166 0.230 0.029 42.4
Atlantic salmon Salmo salar FIS 110 0.017 0.006 0.367 0.459 0.150 97.6
Desert locust Schistocerca gregaria INS 104 0.002 0.001 0.005 0.964 0.028 99.7
Spiny lobster Panulirus interruptus MIN 62 0.096 0.035 0.121 0.607 0.141 86.9
Blue grama Bouteloua gracilis PLA 22 0.096 0.037 0.090 0.047 0.729 86.7

Notes: Abbreviations for taxa are: birds, BIR; mammals, MAM; reptiles, REP; fish, FIS; insects, INS; marine invertebrates,
MIN; and plants, PLA; q is the median number of yearly transitions. Shown are relative strengths of evidence for five a priori
population dynamics models (Akaike’s Information Criterion [AICc] weight) under density-independent (random walk [RW],
exponential [EX]) and density-dependent (Ricker-logistic [RL], Gompertz-logistic [GL], and h-logistic [TL]) growth. The sum of
AICc weights for the density-dependent models represents the combined percentage weight for those models (wt DD). The binary
outcomes (yes [Y] or no [N]) for the selection of density dependence using AICc, Bayesian Information Criterion (BIC), cross-
validation (C-V; Turchin 2003), R (Bul; Bulmer 1974), randomization (Ran; Pollard et al. 1987), and parametric bootstrap
likelihood ratio test (PBLR; Dennis and Taper 1994) are shown, as is whether a lagged density-dependent response was detected by
AICc and C-V. The values in boldface show the model with the highest AICc weight per taxon.
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formed AICc weight) against (1) log of time series length

to determine whether the support for density depend-

ence was related to length of monitoring, and (2)

variance in population growth rate to test if high

variability overwhelms the density-dependent signal.

We also regressed realized r per generation (rG) against

log of time series length (in generations to reduce cross-

species variability due to life history effects) to determine

how long a population must be monitored before

stabilization due to intrinsic or extrinsic regulatory

processes is observed. (3) Single density-independent vs.

density-dependent pairwise model comparisons were

used to evaluate whether our chosen a priori model set

produced a bias towards density dependence. (4)

Sampling error may spuriously inflate the evidence for

density dependence. Of our 1198 total species, 83 (all

vertebrates) represented relatively high-precision direct-

count data (e.g., mark–recapture estimates of abun-

dance, entire colony counts) as opposed to indirect

estimates of population abundance for the remaining

446 vertebrates (e.g., catch per unit effort, harvest

indices). We compared the strength of evidence for

density dependence between these two groups. (5)

Trending time series might mask endogenous processes

and provide little information about equilibrium con-

ditions. We tested this idea by evaluating which models

were best supported by IUCN-listed (predicted a priori

to be declining deterministically or recovering from

small numbers; almost all vertebrates in our database)

vs. non-listed vertebrate species.

RESULTS

The relative support for density dependence varied

widely among species (for selected examples, see Table

1). Overall, the multi-model inference (MMI) approach

using five a priori population dynamics models indicated

a relative support of 74.7% for density dependence over

all 1198 species (Table 2). There was higher overall

support for density dependence in the invertebrates

(78.0%) than the vertebrates (68.9%), with insects

showing the most support (79.5%) and fish the least

(60.1%; Table 2). This trend was reflected in the weight

of evidence for density dependence among major taxa

(Fig. 1), and in the other statistical tests of density

dependence (Table 2). Taxa with a large number of

representative species (i.e., birds, fish, insects, and

mammals) had consistently higher support for density

dependence (Fig. 1).

The number of years monitored had a strong positive

influence on the evidence for density dependence

(evidence ratio [ER] ¼ 1.35 3 1032, R2 ¼ 11.7%; Fig.

2A). A similar relationship was evident in some of the

NPHT approaches (e.g., R2 ¼ 15.2% for Pollard’s

randomization), but not for others (e.g., R2 ¼ 1.1% for

Bulmer’s R). Species with .50% MMI support for

density dependence had a mean time series length of 23.1

years (95% bootstrapped confidence interval based on

10,000 randomizations ¼ 22.0–24.2, n ¼ 856), whereas

for those with ,50% support, it was 18.0 years (95% CI¼
16.9–19.2, n ¼ 342). The estimate of the rate of

population change per generation (rG), irrespective of

density, tended towards zero as the number of gen-

erations monitored increased (with no evidence for a

trend in rG: ER ¼ 1.01, R2 ¼ 0.1%; Fig. 2B). Without

exception, estimated rG was near zero after monitoring

for approximately e4.5 ¼ 90 generations (Fig. 2B).

The detection rate for density dependence was similar

across the NPHTs, and substantially lower than that

provided by MMI or cross-validation (Table 2). The

BIC model-selection approach detected density depend-

ence more frequently than NPHTs and less often than

the AICc-based MMI or cross-validation. A direct

comparison of AICc-based MMI and cross-validation

requires the removal of the random walk model from the

MMI model set. This produced nearly identical infer-

ences from MMI and cross-validation (Table 2),

confirming the assertion that the latter is a numerically

intensive equivalent to the asymptotic approximation

TABLE 1. Extended.

DD detected? Lag?

AICc BIC C-V Bul Ran PBLR AICc C-V

N N Y N N N N Y
N N Y N N N N Y
N N N N N N N N
Y Y Y Y Y Y Y Y
Y Y Y Y Y N Y N
Y N Y Y Y N Y N
Y Y Y N N N N Y

FIG. 1. Distribution of proportional support assigned to
density dependence (based on Akaike’s Information Criterion
(AICc) weights for the three density-dependent models) for
birds (BIR), fish (FIS), insects (INS), mammals (MAM),
marine invertebrates (MIN), plants (PLA), and reptiles and
amphibians (RAM). Bars represent the 50% probability density
of the distribution with the width proportional to the number of
species in the taxonomic group, black lines indicate the median
value, and whiskers show 1.5 times the inter-quartile range.
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given by AIC (Stone 1977). Between 25.5% (cross-

validation) and 12.4% (AICc) of species had greater

support for lagged density dependence than either direct

density dependence or density independence (Table 2).

Using the full model set did not introduce a bias

toward a particular conclusion because two pairwise

comparisons indicated similar proportional support for

density dependence: random walk (29.2%) vs. Gom-

pertz-logistic (70.8%) and exponential (22.4%) vs.

Ricker-logistic (77.6%). More variable time series

showed greater support for density dependence (ER ¼
1.71 3 106), but explained little of the underlying

variation (R2¼ 2.5%). Sampling error did not spuriously

inflate the evidence for density dependence: Direct-count

time series had a median MMI support for density

dependence of 87.0% (95% CI ¼ 76.2–93.1%), but only

71.2% (64.9–78.2%) for the less precise indirect counts.

Pollard’s randomization gave a similar result (direct-

count, 57.9–74.7%; indirect-count, 42.4–50.0%), but

PBLR showed no difference (direct-count, 21.7–38.6%;

indirect-count, 26.1–33.0%). Finally, IUCN-listed spe-

cies had higher support for the exponential model

relative to unlisted species as predicted (IUCN-listed

median AICc weight ¼ 14.6%, 95% CI ¼ 12.1–17.2%;

unlisted ¼ 8.6%, 7.6–9.6%).

DISCUSSION

We have used multi-model inference (MMI), model

selection and classic Neyman-Pearson hypothesis tests

(NPHT) to provide convincing evidence for pervasive

density dependence in the time series data of 1198 species,

yet we found little discernable difference across major

taxonomic groups. These results agree with earlier work:

Woiwod and Hanski (1992) used NPHT to detect density

dependence in 79% of moth and aphid species where time

series exceeded 20 years; Zeng et al. (1998) employed BIC

to show that a density-dependent model was preferenced

in 23 of 31 species examined; and Turchin and Taylor

(1992) used C-V to demonstrate support for direct or

complex endogenous dynamics in all but one of 14 insect

and 22 vertebrate populations. The uniqueness of our

contribution in the context of the density dependence

literature is twofold: (1) The number of species examined

is almost three times that of the previous largest study (on

moths and aphids only; Woiwod and Hanski 1992), and

more than an order of magnitude larger than other cross-

taxonomic comparisons (e.g., Turchin and Taylor 1992,

Dennis and Taper 1994, Zeng et al. 1998). The recent

analysis of 1780 abundance time series (not species) by

Sibly et al. (2005) implicitly assumed density dependence

in all populations and proceeded to examine its form

using the h-logistic model. (2) Multi-model inference

employing AIC was used as a basis for determining the

strength of evidence for density dependence and com-

pared to the results of the more commonly applied best-

model selection (BIC and C-V) and NPHT (three classic

tests). The relative evidence for density dependence using

these approaches was as expected. Indeed, AIC is

anticipated to provide higher support for more-complex

models, so it is the recommended approach in manage-

ment issues attempting to capture the complexities of

ecological reality. As such, AIC may over-parameterize

because it does not attempt to identify the true model

(whereas BIC may under-parameterize; Anderson and

Burnham 1999). Our large sample of 1198 species and the

consistent results using different methods suggest that

any possible sensitivity to outliers does not alter our

general conclusions.

Given the relative regularity with which density-

dependent feedback mechanisms have been shown to

affect vital rates such as survival, fecundity, and age at

first breeding (Barker et al. 2002, Osenberg et al. 2002)

and the claims that density dependence is a repeatable,

measurable characteristic of a species (Wolda and

Dennis 1993), it is important to understand why it is

not always strongly supported in analyses of time series

TABLE 2. Support for density dependence in population abundance time series of 1198 species.

Taxon n q

AICc model weight RDD wt DD (%)

RW EX RL GL TL AICc AICc�RW C-V BIC

All species 1198 22 0.190 0.063 0.244 0.428 0.074 0.747 0.922 93.9 66.2
Invertebrates 639 19 0.170 0.050 0.267 0.438 0.075 0.780 0.940 96.7 71.0
Vertebrates 529 26 0.223 0.088 0.217 0.401 0.071 0.689 0.918 90.5 64.1
Insects 604 16 0.158 0.047 0.276 0.443 0.076 0.795 0.944 97.2 72.2
Birds 224 20 0.149 0.054 0.253 0.455 0.089 0.797 0.937 91.6 61.2
Mammals 152 22 0.241 0.115 0.190 0.375 0.079 0.644 0.849 88.8 59.9
Fish 115 15 0.285 0.114 0.193 0.351 0.057 0.601 0.840 90.4 54.8

Notes: Shown are the number of species in each group (n), median number of yearly transitions (q), and relative strengths of
evidence for five a priori population dynamics models (median AICc weight across all species rescaled to sum to 1) encapsulating
density-independent (random walk [RW], exponential [EX]) and density-dependent (Ricker-logistic [RL], Gompertz-logistic [GL],
and h-logistic [TL]) growth. The sum of AICc weights for the density-dependent models represents the combined proportional
weight for density dependence (RDD wt). For comparison to cross-validation (C-V; Turchin 2003), the AICc weights without the
RW model are also given (AICc�RW). Also shown are the percentage of species in which density dependence was ‘‘selected’’ using
C-V, Bayesian Information Criterion (BIC), and the three null-hypothesis tests (NHT): R (Bul; Bulmer 1974), randomization (Ran;
Pollard et al. 1987), and parametric bootstrap likelihood ratio test (PBLR; Dennis and Taper 1994). The final columns indicate the
percentage of all species in which lagged or lagged þ direct density dependence (lagged DD) was preferred over direct density
dependence using AICc and C-V.
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data. There are a number of likely explanations: (1) The

time series is too short. There is ample support for an

increasing likelihood of detecting density dependence or

support for higher dimensional models (e.g., delayed

responses) as the time over which a population is

monitored lengthens (Woiwod and Hanski 1992, Hanski

et al. 1993, Wolda and Dennis 1993, Dennis and Taper

1994). Our analysis confirmed this by demonstrating a

relationship between length of monitoring and (a)

increasing evidence for density dependence (Fig. 2A),

and (b) a convergence toward zero net growth rate

(implying equilibrium; Fig. 2B). The latter result is

logical because species able to persist over the long term

either eventually stabilize due to intrinsic or extrinsic

regulatory processes or decline to extinction. The low

support for lagged models (Table 2) may simply reflect

the parsimony trade-off inherent in the statistical

approaches. (2) Deterministic changes in population

abundance (e.g., through habitat loss) can mask

endogenous signals (Woiwod and Hanski 1992, Berry-

man and Turchin 2001), an idea supported by the result

that trending species had a higher support for the

exponential model. (3) Density dependence may operate

at spatial scales much smaller or larger than the

population unit being monitored (Ray and Hastings

1996).

The ability to discern density dependence is affected

by the degree to which a population’s abundance varies

over the period of monitoring (Turchin 1999). In the

classic logistic-growth model there are three fundamen-

tal phases (del Monte-Luna et al. 2004): exponential rise

when growing from small numbers, a point of inflexion

when the number of new individuals added to the

population begins to decline, followed by fluctuation

around some quasi-stable carrying capacity (K; Wolda

1989). It is plausible that in those time series where there

was higher support for a density-independent model, the

monitoring period in question corresponded mainly to

either the exponential rise (exponential model) or the

quasi-stable phase near K (random walk model), giving

low support for density-dependent models describing all

three phases (Dennis and Taper 1994, Zeng et al. 1998).

Paradoxically then, species with low support for density

dependence could in reality be strongly regulated,

especially if other confounding exogenous factors not

included in our analysis (e.g., rainfall) mediate regu-

latory processes (Rothery et al. 1997, Dennis and Otten

2000). Moreover, the relationship between density and

abundance may be difficult to measure when the

expected per capita rate of change is relatively invariant

over the population densities covered during the

monitoring interval: Strong’s (1986) concept of density

‘‘vagueness.’’

A persistent bugbear in the literature devoted to

density dependence is the degree to which detection is

confounded by sampling error. Large sampling errors

TABLE 2. Extended.

NHT significant (%) Lagged DD (%)

Bul Ran PBLR AICc C-V

49.8 48.7 32.6 12.4 25.5
57.4 49.1 35.1 14.3 23.0
41.4 49.3 29.5 10.6 28.4
58.8 50.5 36.3 10.6 23.5
44.2 56.7 33.9 11.2 27.2
39.5 52.0 28.9 21.7 30.9
37.4 40.0 26.1 13.9 29.6

FIG. 2. Empirical relationship between density dependence
and time series length for 1198 species. (A) Density regulation
(complementary log–log transformation of summed Akaike’s
Information Criterion [AICc] weights for the three density-
dependent models) plotted against the log of the number of
years monitored. (B) Average rate of per-generational popula-
tion change, rG (log of the annual ratio of successive densities3
generation length) plotted against the log of the number of
generations monitored (number of observed annual transitions
of population size 4 generation length). The fitted line in (A) is
a least-squares regression (R2¼11.7%; AICc evidence ratio vs. a
zero slope¼ 1.35 3 1032); the dotted line in (B) represents zero
net growth.
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relative to actual changes in population density have

been shown to inflate its spurious detection when

applying various null hypothesis tests (Wolda and

Dennis 1993, Shenk et al. 1998) because of first-order

serial correlations in the observations (Pollard et al.

1987). Dennis and Taper (1994) found little effect of

sampling error on the detection rate using the para-

metric bootstrap likelihood ratio test and, in fact, it

appeared that sampling error increased their method’s

statistical power. Shenk et al. (1998) argued that a more

appropriate evaluation is to assume a constant coef-

ficient of variation rather than sampling error propor-

tional to N. Our results comparing indirect- (i.e.,

presumably higher error) and direct-count data suggest

that the MMI strength of evidence for density depend-

ence is not increased erroneously by higher sampling

error. The strongest MMI support was derived from the

time series thought to be least affected by non-process

error, and the marginal overlap in the confidence limits

between the two groups suggests that sampling error

reduces support for density dependence. Contrary to

expectation for the NPHT, increased sampling error (1)

did not spuriously inflate detection probability when

using Pollard’s randomization test (Pollard et al. 1987),

nor (2) had any effect on the conclusions drawn from the

PBLR test (Dennis and Taper 1994, Shenk et al. 1998).

Although a sustained quest of population ecology has

been the search for increasingly robust tests for detecting

density dependence in time series (Fox and Ridsdillsmith

1995), it is becoming more widely accepted that the

reliable estimation of parameters in flexible population

dynamics models, coupled with estimates of the relative

importance of endogenous vs. exogenous contributions

to population change, provide greater insight (Hanski et

al. 1993, Turchin 1999). Berryman (1991) stressed that

there is no good reason for defaulting arbitrarily to one

particular outcome of the density dependence dichot-

omy (i.e., present or not). The evaluation of multiple

models representing competing hypotheses is a philos-

ophy better suited to an open world (Oreskes et al. 1994)

that is neither entirely black (the density-independent

hypothesis strictly true) or white (density independence

is utterly untrue). MMI provides an analytical frame-

work for examining the relative (not absolute) distance

that any of a set of a priori hypotheses are from truth via

AIC weights (Burnham and Anderson 2002). Although

Zeng et al. (1998) rightly claimed that best-model

selection only indicates whether data are more consistent

with density dependence (or not), methods such as AIC

weights or Bayesian model averaging (e.g., Wintle et al.

2003) allow inferences to be based on all models to

provide a quantitative appraisal of the strength of

evidence for the phenomenon (Hilborn and Mangel

1997), as demonstrated in this analysis.

CONCLUSION

The application of multi-model inference using

information theory, best-model selection, and classic

Neyman-Pearson hypothesis tests on an expansive

empirical dataset of 1198 species abundance time series

provides a convincing and broad-scale reinforcement of

the theory that density dependence is a pervasive

ecological process. Our findings also have important

implications for models that attempt to describe the

extinction probability of threatened species because

density-dependent parameterization is a key modifier

of extinction predictions (Ginzburg et al. 1990, Dennis

and Taper 1994, Zeng et al. 1998, Drake 2005). We have

made substantial progress towards achieving den Boer’s

(1991) ‘‘burden of proof,’’ and as such, argue that

density-dependent mechanisms should be considered

valid components of hypotheses in any a priori model

set that attempts to describe real-world population

dynamical processes.
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APPENDIX

Methodological details for the data set used in this study (Ecological Archives E087-082-A1).

SUPPLEMENT

A data file of summary statistics of the population dynamics data set (Ecological Archives E087-082-S1).
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