
BIODIVERSITY
RESEARCH

Conservation management and
sustainable harvest quotas are sensitive
to choice of climate modelling approach
for two marine gastropods
D. A. Fordham1*, B. W. Brook1, M. J. Caley2, C. J. A. Bradshaw1,3

and C. Mellin1,2

1The Environment Institute and School of

Earth and Environmental Science, The

University of Adelaide, Adelaide, SA 5005,

Australia, 2Australian Institute of Marine

Science, PMB No.3, Townsville MC,

Townsville, Qld 4810, Australia, 3South

Australian Research and Development

Institute, P.O. Box 120, Henley Beach,

SA 5022, Australia

*Correspondence: Damien A. Fordham, The

Environment Institute and School of Earth

and Environmental Science, The University of

Adelaide, Adelaide, SA 5005, Australia.

E-mail: damien.fordham@adelaide.edu.au

ABSTRACT

Aim To establish the robustness of two alternative methods for predicting the

future ranges and abundances for two wild-harvested abalone species (Haliotis

rubra Donovan 1808 and H. laevigata Leach 1814): single atmosphere–ocean

general circulation model (GCM) or ensemble-averaged GCM forecasts.

Location South Australia.

Methods We assessed the ability of 20 GCMs to simulate observed seasonal

sea surface temperature (SST) between 1980–1999, globally, and regionally for

the Indian and Pacific Oceans south of the Equator. We used model rankings

to characterize a set of representative climate futures, using three different-sized

GCM ensembles and two individual GCMs (the Parallel Climate Model and the

Community Climate System Model, version 3.0). Ecological niche models were

then coupled to physiological information to compare forecast changes in area

of occupancy, population size and harvest area based on forecasts using the

various GCM selection methods, as well as different greenhouse gas emission

scenarios and climate sensitivities.

Results We show that: (1) the skill with which climate models reproduce

recent SST records varies considerably amongst GCMs, with multimodel

ensemble averages showing closer agreement to observations than single mod-

els; (2) choice of GCM, and the decision on whether or not to use ensemble-

averaged climate forecasts, can strongly influence spatiotemporal predictions of

range, abundance and fishing potential; and (3) comparable hindcasting skill

does not necessarily guarantee that GCM forecasts and ecological and evolu-

tionary responses to these forecast changes, will be similar amongst closely

ranked models.

Conclusion By averaging across an ensemble of seven highly ranked skilful

GCMs, inherent uncertainties stemming from GCM differences are incorpo-

rated into forecasts of change in species range, abundance and sustainable fish-

ing area. Our results highlight the need to make informed and explicit

decisions on GCM choice, model sensitivity and emission scenarios when

exploring conservation options for marine species and the sustainability of

future harvests using ecological niche models.
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INTRODUCTION

Marine species found in areas close to their upper thermal-

tolerance limits are potentially susceptible to local extinc-

tions, abundance declines, range contractions and trophic

cascades due to global climate change (Harley et al., 2006).

The conservation of threatened species and sustainable man-

agement of exploited marine populations would thus benefit

substantially from models that yield robust predictions of cli-

mate-induced changes in species distributions and abun-

dances (Pereira et al., 2010). Such models need to be able to

account adequately for changes in the physical environments

encountered by marine fishes and invertebrates, and ideally,

capture their ecological and evolutionary responses to these

changes (Cheung et al., 2011).

Confidence in future climate change projections will

depend substantially on the predictive capacity of atmo-

sphere–ocean general circulation models (GCMs) because it

is from these that broad-scale physical environments are pre-

dicted (Stock et al., 2011). However, GCM uncertainties and

intermodel differences can result in vastly different predicted

spatial patterns of climate change (Perkins & Pitman, 2009;

Fordham et al., 2011). Therefore, accounting for these uncer-

tainties and differences when making species range and

abundance predictions requires rigorous climate model eval-

uation. GCM uncertainties, however, have only recently been

considered in ecological studies (Beaumont et al., 2008),

despite the potential benefits and relative ease of doing so

(Fordham et al., 2012a). For example, climate model evalua-

tion may be beneficial where:

1. Ecological niche models that incorporate population

dynamics are used to forecast changes in the range, abun-

dance and catch potential of exploited marine fishes and

invertebrates in response to anticipated climate change

(Cheung et al., 2009, 2010).

2. Downscaled climate change data are used to modify site-

specific ecological models that predict how species’ phenol-

ogy, recruitment and population dynamics will respond to

global warming (Clark et al., 2003; Edwards & Richardson,

2004; Hollowed et al., 2009).

3. Modelling spatio-temporal frequencies of catastrophic

events, such as coral bleaching and the formation of dead

zones (Donner et al., 2005; Brewer & Peltzer, 2009), is of

interest.

In each of these examples, potential GCM uncertainties can

cascade through to forecasts of species abundances, richness

and range movements (Buisson et al., 2010), and influence

predictions of phenology and population dynamics. If ecolog-

ical forecasts, dependent on GCMs, are to be robust, climate

model uncertainty must be accounted for appropriately by

evaluating retrospective skill with which GCMs reproduce

recent climate (Fordham et al., 2011) and exploring a repre-

sentative set of climate futures (Whetton et al., 2012).

The skill with which GCMs reproduce current climate and

past changes varies considerably amongst models. For recent

generations of climate models, multimodel ensemble averages

tend to agree better with observations of present-day climate

than do single models (Murphy et al., 2004; Reichler & Kim,

2008), at least at global scales (Fordham et al., 2011). Ensem-

ble-averaged climate forecasts are now commonly used to

account for variation between different GCM predictions in cli-

mate science research (Pierce et al., 2009; Santer et al., 2009);

however, this approach has rarely been taken in studies of cli-

mate change impacts on marine resources (but see Durner

et al., 2009; Hollowed et al., 2009; Hare et al., 2010). Although

it is reasonable to assume that the uncertainty of GCMs will

affect ecological predictions (Beaumont et al., 2008) and adap-

tation assessments under global climate change (Dessai et al.,

2009), the potential advantages of evaluating the hindcasting

skill of GCMs, and using this information to generate a set of

possible climate futures for investigating ecological responses to

climate change, has not been formally investigated for marine

or terrestrial organisms.

To begin to address this gap, we examine the effects of

GCM uncertainty on spatio-temporal predictions of geo-

graphical range, abundance and sustainable fishing area for

two commercially exploited molluscs: greenlip and blacklip

abalone (Haliotis rubra and H. laevigata) in South Australia

(Fig. 1) for the period 2000–2100. The South Australian aba-

lone industry is worth more than AU$12 million annually

(Mayfield et al., 2011), and its management requires robust

forecasts of sea surface temperature (SST) (Russell et al.,

2012). We compare GCM predictive performance for SST by

ranking twenty GCMs according to their skill in reproducing

observed patterns of regional (Indian and Pacific Oceans)

and global SST, and assess their consistency with other

GCMs. We examine the relative influence of hindcasting skill

on forecast areas of occupancy, population sizes and harvest

areas, for different-sized GCM ensemble suites and individual

GCMs. We also compare the influence of choice of climate

sensitivity (the primary determinant of overall climate

change; Meehl et al., 2007) and greenhouse gas emission sce-

nario on these ecological predictions. We show that the

choice of GCM, and whether or not to use ensemble-aver-

aged climate forecasts, will strongly influence predictions of

future abalone ranges and abundances, thereby substantially

shaping the required response from resource managers.

METHODS

We modelled spatially explicit abundance patterns of

H. rubra and H. laevigata separately for each species across

their ranges (north of latitude 39.5° S) using an ensemble

ecological niche modelling approach that combined likeli-

hood-based generalized linear models and boosted regression

trees. For each modelling technique, a two-step procedure

was used to predict (at ~ 1 9 1 km grid cell resolution): (1)

the current probability of presence, followed by (2) current

abundance conditional on presence (Mellin et al., 2012).

Previous work showed that the best primary predictors of

abundance were mean coolest monthly (August) SST and, to

a lesser extent, its standard deviation. A positive linear
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correlation between August SST and H. rubra abundance

explained 34% of model structural deviance; a positive qua-

dratic relationship for H. laevigata explained 17% of devi-

ance (Mellin et al., 2012). Harvest intensity, water depth and

distance from the nearest boat launching point were also

important predictors. Collectively all predictors accounted

for up to 55 and 45% of deviance explained in the abun-

dance of H. rubra and H. laevigata, respectively (Mellin

et al., 2012). Predicted abundance estimates for each species

across the seascape accounted for the proportion of each grid

cell expected to encompass rocky reef habitats (based on

Watts et al., 2011). This is because the presence of H. rubra

and H. laevigata is restricted to rocky reefs (McShane &

Smith, 1991; Shepherd, 1998).

We used MAGICC/SCENGEN 5.3 (www.cgd.ucar.edu/cas/

wigley/magicc/) to assess the ability of twenty CMIP3 GCMs

[Coupled Model Intercomparison Project 3 GCM database

(www-pcmdi.llnl.gov)] to simulate observed seasonal

(December–February; March–May; June–August; September–

November) SST (1980–1999), globally and for the Indian

and Pacific Oceans (south of the Equator and north of lati-

tude �52.5°). MAGICC/SCENGEN 5.3 is a freely available

software package for the Windows operating system that

allows: (1) the full suite of GCMs used for the Fourth Assess-

ment Report (AR4) of the Intergovernmental Panel on

Climate Change (IPCC) to be directly ranked according to

their ability to simulate historical climate conditions over

regional and global domains; (2) multimodel ensemble-

averaged forecasts of surface temperature and precipitation

(and mean sea level pressure), for any given year up to 2100,

to be generated using a user-defined subset of GCMs; and

(3) results to be produced for matched reference and policy

emissions scenarios (Fordham et al., 2012a). We chose SST

because physiological studies and field-based surveys (1980–

2009) indicate a strong biophysical response to SST, through

recruitment and mortality (Russell et al., 2012; also see

below). We did not assess the ability of IPCC Fifth Assess-

ment Report (AR5) GCMs because not all modelling groups

have submitted data to the CMIP5 database, meaning that a

full assessment of AR5 models is not yet possible – however,

the same approach will be applicable to AR5 models once

they all have been released.

Because all GCM skill (or validation) metrics have

strengths and weaknesses, we considered six alternatives

which are described in detail elsewhere (Fordham et al.,

2011). These were model bias (i.e. the difference between

model and observed spatial means averaged over a user-

specified area), pattern correlation, standard and centred

root-mean-square error and comparison indices devised by

Reichler and Kim (Reichler & Kim, 2008) and Taylor

(Taylor, 2001). We ranked GCMs according to each statistic

and calculated the seasonal and annual cumulative rank. We

separately standardized the annual and seasonal cumulative

ranks by dividing them by the smallest cumulative rank for a

given time period. We used model rankings to produce three

different-sized model ensembles (5-model, 7-model and

10-model) based on regional and global retrospective skill

with which GCMs reproduce recent SST (the method is

described in detail in Appendix S1).

To generate the 7-model average, we first chose four models

with good global skill. We then chose an additional three mod-

els with good regional skill (Appendix S1). We limited the

number of flux adjusted models to one, because flux adjust-

ment can give models an advantage when using hindcasting

validation procedures (Fordham et al., 2011). To generate the

5-model ensemble, we started with the 7-model case and elimi-

nated one model from the global assessment and one from the

regional assessment. For the 10-model case, we used six mod-

els from the global assessment and four models from the regio-

nal assessment; and relaxed the rule regarding flux adjustment
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Figure 1 Extent of the South Australian

abalone management area, showing key

fishing harbours and boat ramps.
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to include two flux adjusted models. We limited ensemble

model sets to 10-model averages because ensemble-averaged

climate forecasts based on large numbers of models are rela-

tively insensitive to the choice of models used to generate pro-

jections (Pierce et al., 2009; Santer et al., 2009). We also used

model rankings to choose two individual GCMs – the Parallel

Climate Model (PCM; Washington et al., 2000) and the Com-

munity Climate System Model, version 3.0 (CCSM-3; Collins

et al., 2006) – commonly used in marine ecological studies

(e.g. Boyd & Doney, 2002; Donner et al., 2005), and with con-

trasting skill in simulating SST over the reference period

(Appendix S1). We modelled greenhouse-gas emissions for

individual GCMs and ensembles of GCMs according to a no-

climate-policy reference scenario (MiniCAM Ref.) (Clarke

et al., 2007) with a best-estimate climate sensitivity of 3 °C
(Meehl et al., 2007). Climate sensitivity is the equilibrium

warming resulting from a doubling of CO2 and, through its

effect on global-mean temperature, is the primary determinant

of overall climate change (Meehl et al., 2007).

These five GCM scenarios characterize a small set of rep-

resentative climate futures (Whetton et al., 2012), with the

PCM predicting the lowest increase in summer (March) SST

and the highest increase in winter (August) SST, and the

model averaged predictions providing intermediate forecasts

between those given by the PCM and CCSM-3 for March

SST (Fig. S1). To compare the influence of model choice

with other common decisions faced by natural resource

managers, such as choice of greenhouse gas emission sce-

nario or climate sensitivity, we also did a comparative anal-

ysis using the 7-model ensemble. Using the 7-model

ensemble, we simulated a highly contrasting (strong mitiga-

tion) emission scenario (LEV1), designed to stabilize at an

equivalent CO2 concentration of 450 ppm (Wigley et al.,

2009), and the 90th percentiles of the range in expected cli-

mate sensitivity for GCMs in the AR4/CMIP3 database

[i.e. 1.5 (low sensitivity, LS) and 6 °C (high sensitivity,

HS)] (Wigley et al., 2009).

We forecast change in average monthly SST using

MAGICC/SCENGEN for the coolest and warmest months of

the year (August and March) at decadal time slices (2000–

2100) under each of the eight climate model scenarios. By

working within the MAGICC/SCENGEN framework, we iso-

lated climate sensitivity effects and modelled a more distinct

anthropogenic climate change signal by averaging across

individual runs of GCMs, a procedure that helps to isolate

the signal from internally generated noise (Fordham et al.,

2012a). In this way, intermodel differences in future climate

forecasts were studied without being confounded by inter-

model differences in climate sensitivity.

We downscaled our SST projections by first applying

bilinear interpolation to reduce discontinuities in the

perturbed climate at the GCM grid-box boundaries

(~ 50 9 50 km latitude/longitude). We then added the fore-

cast climate anomaly (change in SST since 1994) directly to

a high-resolution (~ 1 9 1 km) average monthly climatology

(1985–2004) (following Russell et al., 2012).

We compared predicted area of occupancy, population

size and spatial patterns of abundance across the eight cli-

mate model scenarios to explore how choice of GCM, model

sensitivity and emissions scenario influenced predicted aba-

lone abundance and sustainable fishing areas in South Aus-

tralia (Fig. 1). We used the minimum adult density needed

to maintain the rates of recruitment required to sustain com-

mercial harvests of H. rubra and H. laevigata (20 individuals

100 m�2; Shepherd & Partington, 1995) to define a sustain-

able fishing area.

We restricted forecast abundance to grid cells with SST

below species-specific, upper thermal-tolerance levels, based

on the following evidence: (1) optimal temperatures for

H. rubra and H. laevigata are 17.0 and 18.3 °C, respectively
(Gilroy & Edwards, 1998) and relative abundance declines

with SST above these thermal bounds (Fig. S2); (2) tempera-

tures > 18–20 °C affect juvenile recruitment and growth neg-

atively (Shepherd & Breen, 1992; Harris et al., 2005); (3)

temperatures > 21 °C (H. rubra) and 22.5 °C (H. laevigata)

cause a detrimental behavioural response in adults, inhibiting

feeding and growth (Gilroy & Edwards, 1998); (4) the critical

thermal maxima (i.e. temperature at which 50% of animals

die) is approximately 27 °C, but temperature-related deaths

can occur at temperatures as low as 24.5 °C for some indi-

viduals (Gilroy & Edwards, 1998). Considering that popula-

tion recruitment would be impossible, or severely dampened,

at temperatures greater than 21 °C for H. rubra and 22.5 °C
for H. laevigata, and that a 1 °C buffer is needed to account

for the mean difference between sea surface and seabed tem-

peratures (Fig. S3), we set the upper thermal tolerance to a

SST of 22 °C for H. rubra and 23.5 °C for H. laevigata.

We contrasted the effects of GCM and ecological-niche-

model uncertainty on the mean predicted abundance of

H. rubra and H. laevigata using a representative set of possi-

ble climate futures based on the 7-model average, CSSM-3,

PCM (See Fig. S1). For each species, we predicted abun-

dances in 2100 in each grid cell (~ 1 9 1 km) according to

each of the three climate model scenarios and calculated

average cell abundance across scenarios. We then calculated

the deviation (% difference) from this average predicted

abundance per grid cell for each individual climate model

scenario. We then calculated mean deviation (%) across all

cells in the study region to generate, for each species, an esti-

mate of mean prediction error resulting from the application

of this range of climate models. We compared these esti-

mates of prediction error to the mean prediction error from

ecological niche models estimated using 10-fold cross-valida-

tion (Franklin, 2009) and reported in Mellin et al. (2012).

RESULTS

For most of the model performance metrics, the 7-model

ensemble average outperformed single models in its ability to

hindcast recently observed seasonal SST at global and

regional scales (Table 1). Only the model bias metric and the

Reichler-Kim metric (Reichler & Kim, 2008) indicated that
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the 7-model ensemble was outperformed; nonetheless, the

7-model ensemble was always ranked in the top 50% of

alternative model combinations across all metrics, geographi-

cal extents and seasons. The CCSM-3 had superior retrospec-

tive skill in reproducing recent SST compared to the PCM

(Table 1).

Total abundance for both H. rubra and H. laevigata was

forecast to increase in response to increased SSTs in cool

months of the year. Concordantly, initial area of occupancy

was predicted to decrease due to increased SSTs in warm

months of the year, which in some areas are expected to

exceed thermal tolerances that limit population recruitment,

adult growth and survival (Fig. S4). However, the severity

of forecast change in population size and area of

occupancy was highly variable and depended on choices of

GCM, climate sensitivity and emission scenario (Figs 2 &

3).

For H. rubra, ensemble-averaged climate forecasts

(5-, 7- and 10-model ensembles) predict an intermediate rate

of contraction in area of occupancy (61–72% reduction in

extent of occurrence by 2100) compared to either more pes-

simistic (CCSM-3) or more optimistic (PCM) forecasts from

single GCMs (Fig. 2). According to CCSM-3, H. rubra stocks

will experience a faster rate of contraction (85% reduction in

extent of occurrence by 2100) when compared to ensemble-

averaged climate forecasts, modelled under an identical emis-

sion scenario and with the same climate sensitivity of 3 °C.
The velocity of reduction in area of occupancy for H. rubra

according to CCSM-3 was most similar to that forecast using

the 7-model ensemble with climate sensitivity set at the

upper 90th percentiles of the range in expected climate sensi-

tivity (6 °C) (89% by 2100). In contrast, the PCM forecast a

much slower rate of contraction in area of occupancy

(50% by 2100) compared to ensemble-averaged climate fore-

casts with a similar climate sensitivity and emissions scenario

(Fig. 2). The PCM predicted a much more rapid rate of pop-

ulation growth than the ensemble-averaged climate forecasts

and CCSM-3: +94% compared to a +24–58% increase in

population size between 2000 and 2100 (Fig. 2). The rate of

change in area of occupancy and population size for the

PCM was most similar to the 7-model ensemble with climate

sensitivity set at the lower 90th percentiles of the range in

expected climate sensitivity (1.5 °C) (Fig. 3). The influence

of model choice on population size for H. laevigata was sim-

ilar to predictions for H. rubra, but differed for area of occu-

pancy (Figs 2 & 3). Namely, area of occupancy for the PCM,
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Figure 2 Forecast total population size [Log(Ntot)] and change in area of occupancy (% Initial range) for H. rubra and H. laevigata

between 2000 and 2100 according to different-sized model ensembles [5-model (5-mod), 7-model (7-mod) and 10-model (10-mod)],

and two individual GCMs that are commonly used in published ecological applications (CCSM-3 and PCM). Emissions are modelled

according to a no-climate-policy reference scenario (MiniCAM Ref.) and a climate sensitivity of 3 °C.
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7-model ensemble with climate sensitivity set at 1.5 °C and

7-model ensemble Policy emission scenario was predicted to

remain relatively stable for H. laevigata.

General circulation model choice affected the location and

size of productive H. rubra and H. laevigata fishing areas in

South Australia in 2100 in similar ways (Figs 4 & 5, Figs

S5–S7). The hindcasting skill of CCSM-3 ranked a close second

to the 7-model ensemble (Table 1); however, spatial patterns

of forecast change in abundance (i.e. total population size and

area of occupancy) differed markedly from most of the ensem-

ble-based predictions (Figs 4 & 5, Fig. S5–S7). The CCSM-3

forecasts were most similar to the 7-model ensemble climate

scenario with high climate sensitivity (Figs 4 & 5). Thus rank-

ing GCMs using model skill in simulating reference conditions

does not guarantee that forecasts will be similar amongst

closely ranked models.

Uncertainty arising from variation in choice of climate

model (7-model ensemble, CCSM-3, PCM) had a larger effect

on error in abundance estimates for H. rubra than for

H. laevigata, resulting in a mean prediction error of 65 and

25%, respectively. In comparison, ecological niche model–

related errors were 37 and 47% for H. rubra and H. laevigata,

respectively. These results show that abundance predictions of

H. rubra were more sensitive to GCM uncertainty, whereas

those of H. laevigata were influenced more by ecological-

niche-model uncertainty; nonetheless, the influence of climate

model choice was still large enough to cause large variation in

spatial abundance patterns (Fig. 5).

DISCUSSION

Until now, ecological evidence for incorporating ensemble-

averaged climate forecasts into sets of representative climate

futures for use in predicting climate change impacts and

developing conservation and management strategies has been

missing (Cook et al., 2010). We show that choice of GCM,

and the decision of whether to use ensemble-averaged or

single-model climate forecasts, can strongly influence spatio-

temporal projections of future location and population size

of marine species under climate change. We demonstrate

that although single models can display similar retrospective

(hindcasting) skill to the ensemble in predicting past

climates, they can generate very different forecasts of spatial

abundance patterns.
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Figure 3 Forecast total population size [Log(Ntot)] and change in area of occupancy (% Initial range) for H. rubra and H. laevigata

between 2000 and 2100 for the 7-model ensemble for the extremes of the range in expected climate sensitivity [1.5 °C (LS) and 6 °C
(HS)] according to a no-climate-policy reference scenario (MiniCAM Ref.). We also show population size and change in area of

occupancy for the 7-model ensemble according to the LEV1 policy (strong greenhouse gas mitigation) emission scenario (POL) and a

climate sensitivity of 3 °C, and the CCSM-3 and PCM models with parameters as described in Fig. 2.
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Change in
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Figure 4 Change in area of occupancy and spatial abundance for H. rubra in 2100 (number of individuals 100 km�2) in South Australia.

Change in abundance is mapped for the 7-model ensemble (7-mod) and for two commonly used GCMs (CCSM-3 and PCM) – modelled

according to a no-climate-policy reference scenario (MiniCAM Ref.) and a likely climate sensitivity of 3 °C. We also show change in

abundance for the 7-model ensemble for the extremes of the range in expected climate sensitivity [1.5 °C (LS) and 6 °C (HS)] and

according to the LEV1 policy emission scenario (POL). Range contraction shows areas where H. rubra is predicted to experience local

extinctions by 2100. Unsustainable harvest shows areas where abalone abundance is forecast to be < 20 individuals 100 m�2 – the

minimum density needed to maintain the rates of recruitment required to sustain any fisheries catches. Mapped H. rubra abundance for the

year 2000 is available as supplementary material (Fig. S5).
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The range and abundance of many exploited marine spe-

cies, like H. rubra and H. laevigata, are expected to be

affected negatively by climate change (Stock et al., 2011),

and ecological niche models are increasingly important for

informing the management of exploited marine fishes and

invertebrates (Cheung et al., 2009, 2010). Thus, our results

strongly suggest that better outcomes in marine resource

management will be available through the use of sets of rep-

resentative climate futures, centred around regionally and

globally skilful ensemble-averaged climate forecasts, rather

PCM

Pol

LS

CCSM-3

HS

7mod

Figure 5 Change in area of occupancy and spatial abundance for H. laevigata (number of individuals 100 km�2) in 2100 in South

Australia. All other parameters are identical to Fig. 4. Mapped H. laevigata abundance for the year 2000 is available as supplementary

material (Fig. S5).
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than uncritical use of GCM information. Our contention

here is supported by ensemble-averaged climate forecasts: (1)

providing better agreement with observations of recent sea-

sonal SST (an important climate force in conditioning eco-

logical responses in marine systems; Chavez et al., 2003;

Behrenfeld et al., 2006) than do single models; and (2)

accounting for inherent uncertainties that result from GCM

differences, which can influence forecasts of abundance and

area of occurrence and sustainable fishing area.

The extent of occurrence and area of occupancy of

H. rubra and H. laevigata in South Australia are likely to

decline (compared to present-day distributions) during the

21st Century, owing to increased SSTs in warmer months of

the year exceeding thermal tolerances in northern regions of

their current range. Indeed, our models predicted range

decline in H. rubra even under the most optimistic of the

current credible greenhouse-gas-mitigation scenarios (LEV1),

which is designed to stabilize at an equivalent CO2 concen-

tration of 450 ppm. In contrast, we forecast that the total

population sizes of H. rubra and H. laevigata will increase,

driven by warmer SSTs leading to enhanced abalone fertility

and recruitment. Gonad development increases linearly with

temperature up to 18 °C (Grubert & Ritar, 2004b), leading

to a greater reproductive output and development of larvae

(Grubert & Ritar, 2004a), thereby promoting faster settle-

ment and increased juvenile survival (Russell et al., 2012).

Compared to CCSM-3 or the ensemble-averaged climate

forecasts, the PCM predicted a relatively high decadal rate of

increase in August SST, but a comparatively low rate of

change in March SST (Fig. S1). The net results of these

changes under this model scenario are large predicted popu-

lation sizes for H. rubra and H. laevigata and a slower rate

of range contraction, or range stability (Fig. 2). However,

populations are often limited by endogenous processes such

as density feedbacks (Brook & Bradshaw, 2006). Thus, it is

possible that intraspecific resource competition (a process

not considered in our models) could potentially modify

population abundance, dampening the predicted positive

influence of SST on population size for H. rubra and

H. laevigata.

From a fisheries management perspective, our models

predicted climate change will shift southwards the potential

harvest areas for H. rubra by 2100 due to increasing SST. Cur-

rently, uninhabited and low-density habitats in the South Aus-

tralian fishery will become warmer and more suitable for

population establishment, growth and persistence, all else

being equal. A similar, but less pronounced shift in fishing

areas is expected for H. laevigata. However, where fishers can

expect to harvest abalone in 2100 very much depends on the

climate model scenario used. Commonly used GCMs, with

opposing retrospective skill in simulating recent regional and

global SST, provide contrasting future predictions of the size

of the potential abalone fishing area in South Australia, and

the spatial distribution of harvestable sites. For instance, under

the PCM, the future of the H. rubra industry in South Austra-

lia is encouraging, being characterized by high, contiguous

densities of abalone, reasonably close to fishing harbours and

market centres. According to the CCSM-3 model, by contrast,

harvestable stocks are forecast to be relatively sparse, posing

management challenges for this commercially important fish-

ery. The most plausible scenario for H. rubra, based on ensem-

ble-averaged climate forecasts, suggest a more viable abalone

fishery (compared to CCSM-3) with larger adjoining potential

fishing areas, and where distances between fishing harbours

and harvest sites are short.

For H. laevigata, the economically important fishing areas

located in the Spencer Gulf and Gulf of St Vincent are pre-

dicted to remain unchanged, contract or disappear depending

on whether climate change is simulated using the PCM, suites

of GCMs or the CCSM-3, respectively. Because ensemble-

averaged climate forecasts provide more robust estimates of

future change (see below), the most likely scenario is that these

valuable fishing areas will be lost in all but the southern sec-

tions of the Spencer Gulf and Gulf of St Vincent. Although our

predictions capture key components of ocean systems and

how they are likely to change in the future, they might not suf-

ficiently capture local-upwelling (K€ampf et al., 2004) and its

potential influence on the range dynamics of abalone.

Resource managers often use ecological niche models to

evaluate climate management options (Willis et al., 2009).

Therefore, the choice of climate model scenario clearly must

be integral to any future industry risk analysis for an abalone

fishery, an enterprise worth more than AU$200 million

annually. Because abalone are amenable to introduction and

translocation (Dixon et al., 2006), ecological niche models

linked to robust climate forecasts could be used to assist the

migration of H. rubra and H. laevigata to future habitats

predicted to be climatically suitable and stable (Fordham

et al., 2012c), thereby reducing the risk that the velocity of

climate change will outpace dispersal and enhancing resil-

ience and potential sustainability of the abalone fishery.

These models could also be used to identify key areas to

establish refugia to replenish stocks in surrounding harvest

zones (Shepherd & Brown, 1993).

Beyond GCMs, there is evidence from various applications

of numerical modelling to suggest that multimodel averages

often yield better predictions than do single models (Johnson

& Omland, 2004). In ecology, including those studies using

ecological niche models (Ara�ujo & New, 2007), weighted

model averaging is now widely used to account for model

uncertainty (Burnham & Anderson, 2002). Thus, because

they display good skill in predicting observed conditions and

they account for important intermodel uncertainties that can

influence forecasts (Fordham et al., 2011), ecological niche

models linked to ensemble-average climate forecasts should

provide fishery managers with a more realistic and robust

tool for projecting the influence of climate change on aba-

lone range and abundance. This is especially so, when treated

as the ‘most likely’ of a set of representative climate scenar-

ios, because adaptation planning requires consideration of a

range of plausible and relevant climate futures (Whetton

et al., 2012).
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Although CCSM-3 simulations of observed and regional

seasonal SST were ranked a close second to the 7-model

ensemble (Table 1), and even outperformed the ensemble

average for some evaluation metrics, spatial patterns of fore-

cast change in abundance differed markedly from most of

the ensemble-based predictions (Figs 3–5, Fig. S6 and S7).

The CCSM-3 forecasts were most similar to the 7-model

ensemble climate scenario when climate sensitivity (the equi-

librium warming resulting from a doubling of CO2) was set

to 6.0 °C, rather than the much more likely estimate of

3.0 °C (Meehl et al., 2007). This observation reinforces our

argument for using multimodel averaging to generate future

climate projections because, through its effect on global-

mean temperature, climate sensitivity is a primary determi-

nant of overall climate change.

While our ecological niche models successfully predicted

present-day spatial patterns of abalone abundance (Mellin

et al., 2012), they incorrectly projected abalone occurrence in

some areas of the species’ South Australian range. This is

probably due to a combination of predictor uncertainty

(Watts et al., 2011) and regional environmental conditions

not reflected in our model parameters. Predictor uncertainty

might be reduced in future models by incorporating infor-

mation on the location of soft-sediment trawl fisheries,

which are now accurately tracked. Furthermore, the explicit

incorporation of metapopulation processes, modified dynam-

ically by exploitation, food availability and climate change,

could improve the model’s predictive performance (Fordham

et al., 2012b,d).

It is generally assumed that GCM skill in simulating

observed conditions translates to more reliable climate pro-

jections (Perkins et al., 2009; Pierce et al., 2009; Santer et al.,

2009). However, ranking GCMs based on model skill in sim-

ulating reference conditions does not necessarily guarantee

that forecasts will be similar amongst closely ranked models

according to hindcasting skill (Whetton et al., 2007). Such

inconsistencies arise because GCMs differ in how they model

complex physical processes of climate systems and their

interactions (Knutti et al., 2010), and these differences might

only appear when used to forecast future conditions (Stock

et al., 2011). Better understanding of potential differences

between skilful GCMs (or suites of models) is important

because they transfer to ecological predictions, something

which, until now, had remained unclear.

By averaging across an ensemble of highly ranked skilful

GCMs, inherent uncertainties that result from GCM differ-

ences are incorporated, providing a consensus (average) fore-

cast of change in species range, abundance and sustainable

fishing area. Ideally, ecologists and resource managers should

use a mixed approach, evaluating the sensitivity of their out-

comes to both ensemble- and some individual-model fore-

casts, while acknowledging that climate model–related

variability is one of a number of important sources of

uncertainty in forecasts of climate impacts on marine

resources. Using single-model climate forecasts based on

GCMs with contrasting skill in simulating recent climates, in

combination with ensemble-averaged climate forecasts, can

reduce the effort required to develop a range of plausible cli-

mate futures for the purposes of risk assessment. However,

the generality of this conclusion (across taxa and systems)

needs further investigation. Our abalone case study highlights

the need to use user-friendly climate modelling programs,

such as MAGICC/SCENGEN, to allow the ecological research

community to make more informed decisions on GCM

choice, model sensitivity and emissions scenarios when

exploring future climate-induced changes in species’ ranges,

abundance and sustainable fishing areas.
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