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Abstract

Evidence is accumulating that species’ responses to climate changes are best predicted by modelling the interaction

of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip

(Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of

accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range

(geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Tradi-

tional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation

of abalone by promoting increased abundances without any reduction in range size. However, models that account

simultaneously for demographic processes and physiological responses to climate-related factors result in future

(and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone.

Range expansion and population growth are unlikely for blacklip abalone because of important interactions between

climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abun-

dance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO

has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as

proxies for extinction risk. These results show that predicting species’ responses to climate change often require phys-

iological information to understand climatic range determinants, and a metapopulation model that can make full use

of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink

dynamics and dispersal-limitation.
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Introduction

Human-driven global climate disruption is affecting

the demography, geographical distributions and phe-

nologies of many marine species (Clark et al., 2003;

Edwards & Richardson, 2004; Perry et al., 2005; Dulvy

et al., 2008). These impacts stem from biophysical

responses to ocean temperature change and other

related climate-driven oceanographic phenomena such

as hypoxia and acidification (P€ortner, 2010). Additional

future warming and acidification are expected to

continue to alter marine ecosystems rapidly (Harley

et al., 2006), as well as modify the economic and social

systems that depend on them (Sumaila et al., 2011).

Past and predicted changes in the distributions and

abundances of marine and terrestrial species are com-

monly estimated using correlative ecological niche

models (ENMs) (also referred to as ‘species distribution

models’ or ‘bioclimatic envelope models’) (Franklin,

2009; Peterson et al., 2011; Ara�ujo & Peterson, 2012).

However, mechanistic modelling approaches that

account explicitly for species-specific physiological

traits are being applied more frequently to questions of

how species’ distributions will respond to climate

change (Crozier & Dwyer, 2006; Kearney et al., 2008;
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Cheung et al., 2011). Linking functional traits with

environmental conditions should result in more robust

predictions of range shifts in situations where human-

mediated environmental change has already altered a

species’ observed range, or where distribution data

inadequately represent important environmental gradi-

ents due to historical effects (i.e. through localized

depletion from harvesting) (Buckley et al., 2010). These

more robust predictions arise because biophysical mod-

els more directly capture a species’ fundamental niche

by incorporating explicit relationships between envi-

ronmental conditions and organismal performance,

estimated independently of the species’ current distri-

bution (Kearney & Porter, 2009). In contrast, ENMs rely

on statistical correlation to estimate a species’ realized

niche using phenomenological methods that relate cur-

rent distributions to environmental conditions (Peter-

son et al., 2011). This approach implicitly assumes that

species occupy their entire range of habitable environ-

mental conditions (Ara�ujo & Peterson, 2012); however,

this assumption is rarely true, often for historical rea-

sons (Monahan, 2009). Although this problem can be

addressed directly in ENMs through a better under-

standing of how abiotic conditions and dispersal poten-

tial have influenced a species geographical distribution

over time (Nogu�es-Bravo, 2009; Barve et al., 2011), this

approach is rarely used.

Biophysical models should, in theory, be more use-

ful than ENMs for predicting the dynamics of range

limits through time, because the assumption that

available occurrence data represent the species’ entire

range is relaxed (Kearney & Porter, 2009). However,

the extent to which biophysical models perform better

than ENMs is species- and ecosystem specific (Buck-

ley, 2008; Kearney et al., 2010). Biophysical models are

preferable to ENMs if a species’ range and abundance

are constrained by a particular physiological response,

or if its distribution is not in equilibrium with current

climate conditions (Buckley et al., 2010). Nevertheless,

ENMs can still be useful, especially when calibrated

using data from multiple time periods (Maiorano

et al., 2013). They are simpler to parameterize than

biophysical models, and can be readily applied in any

situation where location and climate data are available

(Dormann et al., 2012). Moreover, ENM performance

improves with the inclusion of physiological informa-

tion (Buckley et al., 2011). These ‘biophysical-ENMs’

can be developed using physiological approaches to

(i) select biologically relevant ENM predictors (Austin,

2007; Austin & Van Niel, 2011); (ii) constrain ENM

pseudo-absence selection (Elith et al., 2010); and (iii)

identify a species’ potential distribution that is more

closely aligned with its fundamental niche (Monahan,

2009).

However, to account properly for important biotic

processes such as source-sink and density-feedback

dynamics, and interacting effects of habitat fragmen-

tation and demographic stochasticity in species

distributions, a demographic model is needed

(Fordham et al., 2012a). Methods that link ENMs with

biophysical and metapopulation dynamics might

therefore better estimate range shifts under climate

change by accounting for additional biological and

landscape processes (Keith et al., 2008; Anderson

et al., 2009). Linking life-history traits and spatial data

also permits population density to vary as a function

of climate gradients (including through biophysical

responses), habitat modification, exploitation and

species interactions, which in turn modify survival

and fertility (Fordham et al., 2013a).

Potential physical changes in body size and range

shifts inmarine fishes in response to climate change have

recently been predicted using a coupled biophysical-

population model accounting for physiological

responses to hypoxia, preferences and tolerances to envi-

ronmental conditions, dispersal and population dynam-

ics (Cheung et al., 2012). While sophisticated, this model

did not account for source-sink dynamics (partly because

it was built at a global scale), and so potentially

overlooked important dispersal and metapopulation

processes. The explicit incorporation of metapopulation

processes, modified dynamically by exploitation and

climate change, could have improved the model’s

predictive performance.Here,we advance themodelling

approach of Cheung et al. (2012) by linking ENMs with

stochastic demographic models that account for bio-

physical processes and fine-scale metapopulation

dynamics. We then investigate interacting effects of

climate change and other anthropogenic stressors, such

as commercial harvest, on the population size and range

dynamics of two commercially exploited molluscs

(blacklip abaloneHaliotis rubra and greenlip abaloneHal-

iotis laevigata) inhabiting coastal reefs of SouthAustralia.

We previously used relatively simple ENMs to predict

that climate changemight benefit the Australian abalone

industry,which isworth >$200 million annually (Russell

et al., 2012). Given the constraints of traditional ENMs,

we were forced by the model structure to assume that

exploitation and dispersal limitation had not influenced

the range of habitable conditions occupied by H. rubra

andH. laevigata today. Here, we can relax these assump-

tions and test this hypothesis explicitly using more

sophisticated approaches appraising model predictions

with respect to interactions between physiological

responses, metapopulation dynamics and exploitation

under various climate change scenarios. Specifically,

we compare the influence of three classes of species

distribution models (ENMs, biophysical-ENMs and
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niche-population models) on current occupancy and

future predictions of abundance for two abalone species

under contrasting climate futures, generated using

multiple atmosphere-ocean general circulation models

and greenhouse gas emission scenarios. We interrogate

alternative forecasting methods to address whether pre-

dictions of species’ responses to climate change require

physiological information to predict the relative impor-

tance and magnitude of climatic range determinants,

and a metapopulation model that accounts for biotic

processes and dispersal-limitation effects.

Materials and methods

Climate data

To understand the relationship between present-day abalone

abundance and sea-surface temperatures (SST), we generated

high-resolution gridded mean monthly SSTs (0.01° resolution)
for August and March (coolest and warmest months respec-

tively) for a 20-year baseline period 1985–2004 around South

Australia (Mellin et al., 2012). To explore future climatic trends

relevant to abalone population abundance, we produced

annual climate forecasts for August and March SST according

to two global emission scenarios: (i) a no-climate-policy refer-

ence scenario (MiniCAM Ref) that models a CO2 concentration

of ca. 750 ppm in 2100, and (ii) a corresponding policy scenario

(MiniCAM, Lev1) designed to stabilize at an equivalent CO2

concentration of 450 ppm (Clarke et al., 2007; Wigley et al.,

2009). We used MAGICC/SCENGEN 5.3 (Fordham et al.,

2012c) to generate an annual time series of future climate anom-

alies (2000–2100) based on an evenly weighted ensemble of

seven atmosphere-ocean general circulation models (GCM)

(see Fordham et al., 2013b for a description of the seven GCMs

and why they were chosen), and individually for two contrast-

ing GCMs – the parallel climate model (PCM; Washington

et al., 2000) and the Community Climate SystemModel, version

3.0 (CCSM-3; Collins et al., 2006) (see Appendix S1 for details).

Collectively, these models provide a suite of representative

climate futures, with the PCM predicting the lowest increase in

summer (March) SST and the greatest increase in winter

(August) SST, and the seven-model average providing interme-

diate forecasts between those given by PCM and CCSM-3 for

March SST (Fig. S1).We downscaled SST forecasts to a 0.01° res-
olution using the ‘change factor’ empirical method, where the

MAGICC/SCENGEN low-resolution climate anomaly (change

from an observation period centred on 1990) is added directly

to a high-resolution baseline of observed SST, centred on or

around 1990 (Russell et al., 2012). We applied bilinear interpo-

lation of the GCM data (2.5° resolution) to a finer resolution

(0.5°) to reduce discontinuities in the perturbed climate at the

GCMgrid-box boundaries (Fordham et al., 2011).

Abundance and environmental data

Spatial abundance data for H. rubra and H. laevigata were

based on repeated annual SCUBA surveys that specifically

targeted commercially harvested reefs (1980–2009), and semi-

annual surveys (2004–2009) of randomly chosen reefs across

the entire state of South Australia (Mellin et al., 2012). Proba-

bilities of occurrence for inshore reefs in South Australia were

derived using bathymetric data and artificial neural networks

at a 250-m resolution (Watts et al., 2011). We obtained mean

depth from a ca. 250-m resolution multi-beam bathymetry

provided by Geoscience Australia (Webster & Petkovic 2005).

Data were aggregated to a 0.01° resolution (Mellin et al., 2012).

We collated the geographical coordinates of boat ramps used

by both recreational and commercial abalone fishing vessels

and calculated the Euclidean distance to the nearest boat ramp

for every grid cell in ArcGIS 9.2. (Environmental Systems

Research Institute, Redlands, CA, USA) We sourced commer-

cial catch data for abalone from the SARDI Aquatic Sciences.

A more detailed description of abalone survey methods and

environmental data is provided by Mellin et al., 2012.

Ecological niche model

We modelled spatially explicit abundance patterns of H. rubra

and H. laevigata separately for each species across their ranges

(north of latitude 39.5°S) using an ensemble ecological niche-

modelling approach that combined likelihood-based general-

ized linear models and boosted regression trees. For each

modelling technique, we applied a two-step procedure to

predict (at ca. 1 9 1-km grid cell resolution): (i) the current

probability of presence, followed by (ii) current abundance

conditional on presence (Mellin et al., 2012). Previous work

showed that the best primary predictors of abundance were

mean coolest monthly (August) SST and, to a lesser extent, its

SD. A positive linear correlation between August SST and

H. rubra abundance explained 34% of model structural devi-

ance; a positive quadratic relationship for H. laevigata

explained 17% of deviance (Mellin et al., 2012). Harvest inten-

sity, water depth and distance from the nearest boat launching

point were also important predictors. Collectively, all predic-

tors accounted for up to 55% and 45% of deviance explained

in the abundance of H. rubra and H. laevigata respectively

(Mellin et al., 2012). ENMs were validated using an indepen-

dent dataset (for H. rubra only because of restricted data

availability), as well as standard 10-fold cross-validation (see

Mellin et al., 2012 for the validation results). We used annual

climate forecasts of August SST (2000–2100) as an input in the

ENM abundance models to generate a 100-year time series of

spatial abundance predictions for H. rubra and H. laevigata (see

Appendix S1 for further details). All other predictors were

modelled as static variables (Stanton et al., 2012). Because

H. rubra and H. laevigata are restricted to rocky reef habitat

(McShane & Smith, 1991; Shepherd, 1998), predicted abun-

dance estimates for each species accounted for the proportion

of each grid cell expected to include rocky reef habitat (based

on Watts et al., 2011).

Coupled niche-population model

We built coupled niche-population models (Fordham et al.,

2013a) for H. rubra and H. laevigata in RAMAS GIS v5

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 3224–3237
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(Akc�akaya & Root, 2005). We divided the study region (as

described by Russell et al., 2012; and shown in Fig. 1) into

0.01 9 0.01° grid cells. We based the spatial structure of the

metapopulation (the location and connectedness of occupied

rocky reefs) on spatial predictions of abalone carrying capaci-

ties for individual reefs generated using ENM predictions and

adjusted to account for an under-representation of juveniles

(see Appendix S1 for details).

We developed a pre-breeding, stage-structured matrix

model (Akc�akaya & Root, 2005). Matrix elements governed

transitions among seven length classes (size classes are

provided in Bardos et al., 2006), derived for a time step of

1 year from growth, fertility and mortality data for abalone

populations in Australia (Appendix S1). Fertility and allo-

metric growth rates were the same as those used by Bardos

et al. (2006) for a fast-growing abalone population. We set

annual survival in the largest size class (>118 mm) at 0.72

based on locally derived estimates for non-harvested popula-

tions of H. laevigata (Shepherd, 1990). We modified survival

rates for size classes used by Bardos et al. (2006) proportion-

ally so that the upper limit on annual survival was 0.72

(Appendix S1).

Abalone recruitment and abundance are highly variable,

even in the absence of fishing (Mayfield et al., 2012), probably

due to variability in SST (Shepherd & Brown, 1993). We

initially modelled year-to-year variability in vital rates for

H. laevigata and H. rubra using a coefficient of variation (CV)

of 0.282 for survival (animals >3 years) and 0.85 for fertility

(see Appendix S1 for details). We then adjusted the vital rate

variability so that annual fluctuations in the model’s output of

total metapopulation size matched the observed variability in

H. laevigata abundance (based on Shepherd, 1990), computed

as the CV of log Ntþ1
Nt

� �
(where Nt is the population size a time

t) (Anderson et al., 2009). The revised CV parameters were

0.20 and 0.78 for survival and fertility respectively. We

modelled density feedback using a Ricker (logistic) equation,

modelling a process of deteriorating conditions as density of

animals aged >12 months increases. Survival rates varied pro-

portionally when subpopulation abundance increased above

half of carrying capacity (see below). We simulated an Allee

effect, whereby fertilization success decreased with female

adult density below 0.1 individuals m�2 (Babcock & Keesing,

1999). We estimated maximum rate of intrinsic population

growth (Rmax, exp [rm]) using two independent long-term sur-

H. rubra

Reference Policy

H. laevigata

Legend

Unoccupied PersistLost Gained

b

c

a

d
eA U S T R A L I A

2000

Kilometres

Fig. 1 Forecast change in grid cell occupancy between 2015 and 2090 according to niche-population models under reference and policy

emission scenarios. The direction of change for each cell is based on agreement between at least two of the three general circulation

model approaches (7-model ensemble, CCSM-3 and PCM). Shown are (a) the town of Ceduna, (b) Spencer Gulf, (c) Gulf St Vincent, (d)

Kangaroo Island and (e) Coorong.
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veys (each >13 years) of H. laevigata abundance (Shepherd,

1990; Shepherd & Partington, 1995). By fitting a linear relation-

ship between realized r and population size (Fordham et al.,

2012b), we estimated Rmax at 1.82. The estimates for equilib-

rium carrying capacity (K, when r = 0) were reef-specific and

dynamic over time, being dependent on the sum of abun-

dances for all reef grid cells as generated by the ENMs. The

ENM predictions probably underestimated juvenile abalone

abundances because they are cryptic and difficult to detect

using underwater surveys (Shepherd, 1990). To account for

the influence of survey bias on estimates of K, we multiplied

grid cell abundance by the ratio of juvenile to adults expected

under a stable age distribution.

Temperatures >17 °C for H. rubra, and 18.3 °C for H. laevigata,

affect juvenile recruitment and growth negatively (Shepherd &

Breen, 1992; Harris et al., 2005). Temperatures >21 °C (H. rubra)

and 22.5 °C (H. laevigata) cause a detrimental behavioural

response in adults, inhibiting feeding and growth (Gilroy &

Edwards, 1998). The critical thermal maxima (LD50 i.e. tempera-

ture at which 50% of animals die) is ca. 27 °C, but temperature-

related deaths can occur even at 24.5 °C for some individuals

(Gilroy & Edwards, 1998). We modelled fertility and survival

conditioned by SST in the hottest month of the year (March).

We used a 1 °C buffer to account for the mean difference

between sea surface and seabed temperatures (Fordham et al.,

2013b). For H. rubra and H. laevigata, respectively, recruitment of

12-month-old animals declined linearly between 18 and 22 °C
and 19.3–23.5 °C (with no recruitment at temperatures ≥22 °C
or 23.5 °C). Relative survival declined linearly between 25 and

30 °C for both species.

Wemodelled populations as primarily self-recruiting,with lit-

tle larval exchange at distances up to 20 km (Miller et al., 2009).

We constrained dispersal to the 0- to 12-month-old size class

(McShane et al., 1988) and modelled ca. 90% of animals moving

less than 1 km (i.e. stayingwithin a single grid cell) and 1%mov-

ing 10 km. We used regional variation in August year-to-year

SST to approximate the spatial correlation in environmental

variability. We set environmental variability to be correlated

between populations, with stronger correlations for neighbour-

ing populations. We calculated pairwise correlations as P = exp

(D/b) where D is the distance between centroids of habitat

patches and b = 90 (Akc�akaya & Root, 2005). Similar approaches

have been used to model environmental variability in terrestrial

systems (Anderson et al., 2009; Fordham et al., 2012a).

Abalone harvesters tend to target large aggregations of

older animals with shell lengths >125–145 mm (slightly larger

than the largest size class in our model), depending on the

species and fishing zone, changing fishing location when catch

rates and associated densities decline (McShane & Smith,

1989), among other factors. For each harvestable reef (i.e. reef

in a harvest zone and of sufficient size, see below), annual

catch mortality of animals >118 mm varied from 20 to 30%

every 1–2 years for H. rubra; and 20–40% every 1–3 years for

H. laevigata. We set these harvest rates based on expert advice,

taking into account long-term fishing records (Mayfield et al.,

2011). We modelled the minimum size of harvested animals as

spatially invariant and constant across species. Since reliable

age-based growth data for wild abalone >118 mm are limited,

we set minimum harvest size at 118 mm, not the minimum

legal length enforced by government regulation. Because fish-

ing mortality and harvest frequency varies from year-to-year

at each reef, we randomly varied these parameters for each

reef across model iterations. To simulate important population

refugia (Shepherd & Brown, 1993), arising through a commer-

cial preference to harvest from larger more profitable reefs, we

set the minimum reef size that could support commercial har-

vests at 0.0146 km2 so that 5% of reefs within the harvest

region were not large enough to be harvested. On the basis of

commercial harvest practices in South Australia, we con-

strained harvests to years (and sites) when large adult

(>118 mm) densities were >0.2 and 0.1 m�2 for H. rubra and

H. laevigata respectively. To avoid using a static threshold, we

modelled a steep linear increase in harvest from 0.2 to 0.25

individuals m�2 for H. rubra and 0.1–0.15 individuals m�2 for

H. laevigata.

We predicted area of occupancy (AOO) at 1-km grid cell

resolution (see below), abundance and harvest for each species

for each year between 2000 and 2100 using climate forecasts

from two greenhouse-gas-emission scenarios (MiniCAM Ref

and Lev1) according to an ensemble of seven GCMs (7-model)

and two individual GCMs (CCSM-3 and PCM). In these

scenarios, species’ spatial abundance patterns were driven by

demographic and biophysical processes, commercial harvest-

ing, climate change and their interactions. We based all simu-

lations on 1000 stochastic replicates of RAMAS Metapop

(Akc�akaya & Root, 2005) run over 101 years (2000–2100). We

discarded the first 15 years of the simulation as a ‘burn in’ to

ensure that metrics of change were calculated from a stable

age distribution and equilibrium initial reef abundance

(Fordham et al., 2012b). Thus, model results summarize

projections for the period 2015–2100.

We assessed niche-population model performance using a

40-year time series of catch data (Mayfield et al., 2012). Models

for both H. rubra and H. laevigata approximated species-spe-

cific catches for the South Australian fishery. Observed annual

catches are ca. 480 t for H. rubra and 390 t for H. laevigata.

Mean predicted annual catches, based on model simulations

without climate change, were 484 t for H. rubra, with a mini-

mum annual harvest >267 t. For H. laevigata, they were 460 t

with a minimum catch >315 t, making modelled catches about

15% higher than observed rates. This is not problematic

because catch tends to underestimate annual harvests since

catch estimates do not account for illegal and recreational

catches (Plag�anyi et al., 2011).

Biophysical ecological niche model

We restricted forecast abundance from ENMs to grid cells

with SST below species-specific thermal-tolerance levels (see

above). Specifically, ENM predictions of K were set to zero

above thermal thresholds where the survival, and hence

recruitment, of abalone aged between 0 and 12 months is

expected to decrease by more than 50% (corresponding to

20.05 °C for H. rubra or 21.4 °C for H. laevigata) or by more

than 80% (corresponding to 21.22 °C for H. rubra or 22.65 °C
for H. laevigata).

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 3224–3237
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Model comparisons

We compared forecasts of relative change in abundance and

AOO between 2015 and 2100 for three different modelling

approaches: (i) ENMs with no biophysical constraints; (ii)

biophysical-ENMs, where ENM predictions of K were set to

zero above thermal-tolerances for recruitment; and (iii)

niche-population models that explicitly model biophysical

and demographic responses to climate change and commer-

cial harvesting. We calculated change in AOO as the differ-

ence between the number of grid cells (0.01° resolution cells

encompassing subtidal rock habitats) gained by the species

[sites where abundance in a grid cell exceeded the density

threshold (see below) in 2100, but fell below the threshold

in 2015] and the number of grid cells lost (sites where the

species was forecast to be absent in 2100, but present in

2015) relative to the total number occupied in 2015. We

applied a density threshold of 500 individuals cell�1

(females >12 month old) to spatial density maps (2015–

2100), being equivalent to approximately 3 large females

km�2 (>118 mm shell length). Thus, we ignored low-density

populations that are biologically unviable (Shepherd &

Brown, 1993) in estimates of range shifts (Fordham et al.,

2012a).

We compared predictions of present-day occurrence pat-

terns using 10-fold cross-validation for each species. We

randomly partitioned abundance data into 10 equal sized

subsamples and used nine subsamples to generate both an

ENM and a niche-population model, validating these

models against the remaining subsample. We repeated this

process 10 times, so that each subsample was used only

once for validation. We ran niche-population models for

1000 simulations over 15 years. We calculated Cohen’s

kappa statistic (j) (Cohen, 1960) for each model based on a

confusion matrix, expressing matches and mismatches of

observed and predicted occurrences in the validation data

set. We computed this matrix after using receiver operating

characteristic curves to select a threshold for converting

continuous abundance predictions into predictions of pres-

ence-absence (Liu et al., 2005). We used root mean-squared

error (RMSE) to compare the predictive errors for abun-

dance.

Sensitivity analysis and model uncertainty

We estimated the influence of spatial and non-spatial param-

eters on niche-population model predictions of abundance.

To ensure sampled values covered the entire parameter

space, we used Latin hypercube sampling (Iman et al., 1981)

with 50 sampling dimensions, drawing values for each

parameter randomly from within 50 evenly sized partitions

across realistic ranges of the following parameters: Rmax

(�10%), dispersal (�10%), variability in vital rates (�10%),

carrying capacity (�20%) and harvest off-take (�20%) (see

Appendix S1 for details). To see whether results from ENMs

and biophysical-ENMs differ substantially from niche-popu-

lation models, we plotted the 5th and 95th percentiles of

predicted change in population size using results from these

sensitivity analyses.

Results

Model comparisons

Niche-population models and biophysical-ENMs pre-

dicted that H. rubra and H. laevigata will experience

large contractions in AOO by 2100 for nearly all emis-

sion scenarios and climate modelling approaches

(Figs 1–3 and S2–S5). However, niche-population mod-

els tended to predict smaller losses of AOO under the

reference emission scenario compared to biophysical-

ENMs (Table 1). ENMs predicted marginal changes in

AOO for H. rubra and H. laevigata, regardless of emis-

sion scenario or climate modelling approach (Table 1).

Projected spatial patterns of abundance were highly

dependent on modelling technique (Figs 2 and 3).

Notably, sites where abundance decreased, but popula-

tions were not extirpated, were more frequent for

niche-population models compared to other tech-

niques. Niche-population models forecast decreases in

population size for H. rubra between 2015 and 2100

under both emission scenarios for 7-model and CCSM-

3 (Figs 4 and S6). Conversely, H. laevigata population

size was predicted to increase under the reference sce-

nario between 2015 and 2100 (Figs 4 and S6) despite a

forecast contraction in AOO (Table 1). Biophysical-

ENMs predicted a negative trend in H. rubra population

abundance, and mostly little change in H. laevigata pop-

ulation abundance, under the reference scenario for 7-

model and CCSM-3 (Figs 4 and S6). In contrast, ENMs

predicted large increases in population abundance

under a reference emission scenario for H. rubra and H.

laevigata.

Cross-validation measures of the kappa (j) statistic

showed that both ENMs and niche-population models

performed reasonably well in predicting presence–
absence data for H. rubra (j = 0.57 and 0.48 respec-

tively) and H. laevigata (j = 0.53 and 0.41 respectively)

today. The abundance prediction error for ENMs and

niche-population models were also similar for H. rubra

(RMSE = 0.267 and 0.265) and H. laevigata

(RMSE = 0.043 and 0.064). However, niche-population

models were better at predicting presence–absence data
at reefs that were not used to build or validate the mod-

els (i.e. more ‘distant’ out-of-sample data). For example,

they correctly predicted the absence of abalone (both

for the present-day and for 2015) on the northern shore

of Kangaroo Island, the upper Spencer Gulf, and the

southern section of Gulf St Vincent (see unoccupied

cells in locations a–d on Fig. 1). Biophysical-ENMs, with

a 50% recruitment thermal threshold applied, correctly

predicted the absence of abalone in the upper Spencer

Gulf and areas of Gulf St Vincent, and for H. laevigata

west of Ceduna.
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Commercial catch

Catches (based on historic and present-day catches, all

else being equal) of H. rubra are modelled to decline

between 2015 and 2100 under both emission scenarios

according to the 7-model (�68% and �45% respec-

tively) and CCSM-3 (�67% and �51%), but not PCM

(+716% and +19% respectively) (Fig. S7). Harvest rates

of H. laevigata are predicted to remain stable for all

emission scenarios and climate modelling techniques,

except the PCM reference scenario (+320%; Fig. S7).

Sensitivity analysis and model uncertainty

Niche-population model estimates of final population

size (log N) were most sensitive to assumptions regard-

ing the carrying capacity of individual reefs (Table 2).

Estimates of final population size for H. rubra were also

strongly influenced by estimates of Rmax. Simple ENM

predictions of relative change in abundance for H. rubra

exceeded the upper bound of uncertainty of the niche-

population model under a 7-model ensemble reference

scenario (Fig. 5). However, the ENM predictions for H.

laevigata were not notably different from the niche-

population model, at least for this ensemble reference

scenario, once uncertainty was taken into account.

Discussion

Previous studies have compared correlative and

biophysical predictions of current and future range size

for a variety of terrestrial species (Buckley, 2008; Buck-

ley et al., 2010, 2011; Kearney et al., 2010). However, no

one has previously contrasted explicitly the perfor-

mance of models that account simultaneously for meta-

population dynamics, demographic stochasticity and

biophysical processes, either in marine or terrestrial

environments. In taking such an approach, we showed

Table 1 Percent change in abundance and AOO for Haliotis rubra and Haliotis laevigata between 2015 and 2100.

Modelling approach Climate GCM

H. rubra H. laevigata

Abund. Range Abund. Range

NPM Reference 7mod �62 �44 47 �26

CCSM �63 �59 7 �36

PCM 607 �4 170 21

Policy 7mod �33 �36 �16 �22

CCSM �34 �31 18 �19

PCM 15 �2 �3 �20

ENM Reference 7mod 120 4 78 5

CCSM 147 4 82 5

PCM 740 6 135 5

Policy 7mod 15 1 12 1

CCSM 44 2 31 2

PCM 17 1 12 1

Bio-ENM 80% Reference 7mod 5 �60 �2 �44

CCSM �76 �81 �3 �63

PCM 376 �48 102 �20

Policy 7mod 4 �21 9 �7

CCSM 24 �24 18 �20

PCM 10 �15 4 �19

Bio-ENM 50% Reference 7mod �80 �83 �1 �58

CCSM �77 �82 �73 �76

PCM 161 �61 56 �47

Policy 7mod �26 �38 2 �21

CCSM �23 �45 16 �24

PCM �19 �30 �15 �27

Change in abundance (Abund.) and area of occupancy (AOO) is calculated for two emission scenarios (reference and policy), three

general circulation model (GCM) approaches (7-model, CCSM and PCM) and three modelling techniques: (i) coupled niche-popula-

tion model (NPM); (ii) ecological niche model (ENM); and (iii) biophysical-ENM (Bio-ENM) with an upper critical thermal thresh-

old above which the survival of 0–12 months individuals is expected to decrease by more than 50% or 80%. Change in AOO is the

difference between the number of sites (ca. 1 9 1 km latitude/longitude cells) gained by the species and the number of sites lost rel-

ative to the total number of sites occupied in 2015. See Methods for details.
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that accounting for demographic processes and physio-

logical responses to climate-related factors can improve

predictions of occupancy and abundance for two com-

mercially exploited molluscs inhabiting coastal reefs of

South Australia. We also demonstrated that ENM fore-

casts of population growth and expansion of South

Australian abalone stocks are unlikely to occur, at least

for H. rubra, under a more ecologically realistic framing

because of important interactions between climate-

dependent mortality and metapopulation processes. In

short, incorporating physiological information into

ENMs without simultaneously considering demo-

graphic processes can provide reliable estimates of the

direction, but not necessarily the magnitude, of future

changes of a species’ AOO and abundance.

Earlier work on these species using only ENMs (Rus-

sell et al., 2012) suggested that the Australian abalone

industry could potentially benefit from climate change,

driven by warmer August SST. The favourable condi-

tions arise largely because gonad development

increases linearly with temperature up to 18 °C (Gru-

bert & Ritar, 2004b), leading to a greater reproductive

output and development rate of larvae (Grubert &

Ritar, 2004a), thereby promoting earlier settlement and

increased juvenile survival. However, SST in the sum-

mer months is forecast to increase at a comparable or

greater rate than winter SST (Fig. S1), exceeding ther-

mal thresholds, and thereby reducing recruitment and

survival (Shepherd & Breen, 1992; Gilroy & Edwards,

1998; Harris et al., 2005). Using biophysical information

to modify ENM predictions (Monahan, 2009), or by

modelling fertility and survival mechanistically using

niche-population models with biophysical properties,

we predict that climate change is more likely to

reduce abalone ranges and abundances, rather than

increase them, as is forecast by the simple ENMs. This

Fig. 2 Forecast change in spatial abundance between 2015 and 2100 for Haliotis rubra according to a regionally skilful multi general circu-

lation model averaged forecast, two emissions scenarios (Reference and Policy) and three modelling techniques: (i) ecological niche model

(ENM); (ii) biophysical-ENM with an upper critical thermal threshold above which the survival of individuals 0–12 months of age is

expected to decrease by more than 50% or 80% (corresponding to 20.05 and 21.22 °C); and (iii) coupled niche-population model (NPM).
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discrepancy in predictions arises in part because ENMs

use data in such a way as to give little consideration of

the area that has been accessible to the species over

time (Nogu�es-Bravo, 2009; Barve et al., 2011), meaning

that they probably did not appropriately capture the

species’ potential distribution.

Biophysical-ENMs for H. rubra predict a large reduc-

tion in AOO and declines in total population size.

Declines are forecast not to occur at a proportionally

constant rate, which has important ramifications for the

use of habitat area-change metrics as proxies for extinc-

tion risk (see below). Niche-population models that

included metapopulation dynamics and demographic

processes, as well as physiological responses to thermal

gradients, also predicted a non-proportional reduction

in AOO and total population size. However, here the

extent of change tended to be lower for niche-popula-

tion models than for biophysical-ENMs, at least for

AOO under the reference greenhouse gas emission

scenario. This is probably because niche-population

models simulated directly the effects of population

refugia and source-sink dynamics (Hanski, 1999),

which can play important roles in maintaining popula-

tion stability for abalone (Shepherd & Brown, 1993) and

other marine organisms (Watson et al., 2011). Addition-

ally, we parameterized niche-population models using

fertility responses to a gradient of March SSTs, rather

than assuming an upper critical thermal threshold,

resulting in gradual (and arguably more biologically

realistic) declines rather than abrupt state shifts in local

population densities.

Niche-population models forecast total population

increases despite a contraction in AOO for H. laevigata

under the reference greenhouse gas emission scenario,

suggesting that environmental conditions on some

rocky reefs will improve under pronounced climate

change, and that dispersal and metapopulation dynam-

ics can sustain recruitment to currently uninhabitable

Fig. 3 Forecast change in spatial abundance between 2015 and 2100 for Haliotis laevigata. All scenarios are otherwise identical to Fig. 2

with the exception that critical thermal thresholds were 21.4 and 22.65 °C for the 50% and 80% biophysical- ENMs respectively.
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or suboptimal habitats that are forecast to become more

suitable in the future. These observations have impor-

tant consequences for ENMs that infer extinction risk

from projected changes in geographical extent, because

of their underlying assumption of a linear relationship

between abundance and range area (Akc�akaya et al.,

Fig. 4 Forecast change in abundance (relative to abundance in 2015) for Haliotis rubra and Haliotis laevigata (according to three model-

ling approaches: (i) ecological niche model (ENM); (ii) biophysical-ENM with an upper critical thermal threshold above which the sur-

vival of individuals of 0–12 months of age is expected to decrease by more than 50% or 80%; and (iii) coupled niche-population model

(NPM). Differences between modelling approaches are shown for a regionally skilful multi general circulation model averaged forecast

(7-mod) and two greenhouse gas emissions scenarios (reference or policy). See Methods for further details.

Table 2 Results of the Latin-hypercube-sampling sensitivity analysis for mean population size in 2100 under a reference emission

scenario, based on a multi general circulation model averaged forecast

Species Dependent variable SRC Coeff Lower CI Upper CI

Haliotis rubra K 0.477 0.996 0.983 1.013

Rmax 0.405 1.943 1.924 1.971

Var 0.067 �0.271 �0.291 �0.258

Harv 0.039 �0.089 �0.102 �0.078

Disp 0.011 0.046 0.026 0.062

Haliotis laevigata K 0.734 1.082 1.073 1.090

Rmax 0.107 0.324 0.296 0.348

Harv 0.091 �0.006 �0.020 0.002

Disp 0.064 �0.267 �0.291 �0.242

Var 0.004 0.195 0.177 0.222

Standardized regression coefficients (SRC), actual model coefficients (Coeff) and their upper and lower confidence intervals (CI)

(0.025 and 0.975 bootstrap percentiles) for mean population size (log transformed) in 2100 according to the saturated general linear

model, with the dependent variables: carrying capacity (K), maximum annual finite rate of population increase (Rmax), variability in

vital rates (Var), mean dispersal distance (Disp) and harvest off-take (Harv).
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2006); as we show here, this does not necessarily occur.

A negative or non-linear relationship between AOO

and total population size has similarly been forecast as

a response to climate change among some plants and

vertebrates (Harris et al., 2012; Fordham et al., 2013a).

In most cases, ENMs are built with the assumption

that a species is in equilibrium with its present-day cli-

mate, yet dispersal-limitation can constrain a species

from accessing all habitable areas (Ehrl�en & Eriksson,

2000), and human interference can prevent establish-

ment or modify abundances (Ara�ujo & Peterson, 2012).

Accounting for movement in choice of study extent (Bar-

ve et al., 2011) and temporal calibration of species’ cur-

rent ranges using the fossil record (Nogu�es-Bravo, 2009;

Maiorano et al., 2013) can improve phenomenological

predictions in such situations. However, neither of these

approaches explicitly account for important biotic pro-

cesses, such as species interactions, which can restrict

occupancy in potentially habitable areas (Kissling et al.,

2012). Such interactions are relevant in our case study –
despite commercial catches of H. rubra and H. laevigata

being approximately stable over the last 40 years

(Mayfield et al., 2012), fishing and environmental forcing

has strongly influenced local abalone abundance and

metapopulation dynamics in some areas (Shepherd &

Brown, 1993; Shepherd & Rodda, 2001; Mayfield et al.,

2011, 2012). Thus, we expect that recent human exploita-

tion has altered abalone abundance patterns, at least at

the spatial scale at whichwe built ourmodels.

Although we incorporated the seascape variation in

exploitation rates as predictors in ENMs (Mellin et al.,

2012), the available harvest data were coarse in spatial

resolution and could not distinguish exploitation rates

for individual reefs. Furthermore, we built ENMs using

survey data from South Australia and validated projec-

tions using an independent, spatially explicit data set of

abalone abundance patterns in Victoria (Mellin et al.,

2012). This out-of-sample verification approach pro-

vides a rigorous test of model predictive skill (Franklin,

2009) if the combined datasets appropriately character-

ize the relationship between abundance (or occurrence)

and important environmental gradients. Given that

March SST is likely to reduce H. rubra and H. laevigata

performance at high temperatures, which was detected

by the niche-population models but not the ENMs, we

conclude that the distributions were not in equilibrium

with the physiologically important March SST gradient

because of historical fishing and its interaction with

metapopulation processes (i.e. source-sink dynamics

and dispersal-limitation).

We expect that March SST will become an important

driver of future abundance patterns due to its influence

on abalone reproduction (Fordham et al., 2013b). Thus,

modelling physiological tolerances as well as selected

environmental conditions using biophysical-ENMs and

niche-population models should provide better predic-

tions of range movement under climate change. In con-

trast to ENM forecasts, which suggest a strong positive

influence of climate change on the Australian abalone

industry, biophysical-ENMs and niche-population

models predicted that rapid climate change will (i)

reduce the AOO and abundance of H. rubra in South

Australia, thereby restricting commercial catches; and

(ii) reduce the AOO of H. laevigata, but not necessarily

population size or commercial harvests. Even when

uncertainty in the niche-population model is taken into

account, ENM estimates of change in population size

for H. rubra remain notably different to those from the

more complex model. However, ENM estimates of
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Fig. 5 Uncertainty in forecast change in relative abundance of

Haliotis rubra and H. laevigata for a regionally skilful multi gen-

eral circulation models averaged forecast and reference green-

house gas emissions scenario. Modelling approaches are

identical to Fig. 4, with the exception that for the niche-

population model, uncertainty in estimated change in

population size is based on the sensitivity analysis (bounded by

5th and 95th percentiles). See Methods for further detail.
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change in population size for H. laevigata (the less tem-

perature sensitive species) did not exceed the uncer-

tainty bounds associated with the niche-population

model under a 7-model reference greenhouse gas

emission scenario. These results, especially for H. rubra,

provide evidence that physiological information can

strengthen estimates of the influence of climate change

on species’ range and abundance if (i) human-mediated

changes in environmental conditions alter a species’

spatial abundance patterns; (ii) distribution data do not

adequately represent important environmental gradi-

ents driving abundance (and occurrence) patterns; and

(iii) projections are generated beyond the range of envi-

ronmental values used to calibrate the correlative

model. Likewise, our results suggest that using physio-

logical information to modify ENM predictions (i.e.

using biophysical-ENMs), can result in over- or under-

estimation of the magnitude of forecast change in AOO

and abundance (depending on the biophysical

threshold), because unlike niche-population models,

metapopulation processes are not considered.

Simple correlative models and more complex cou-

pled models gave similar predictions for the presence

or absence of abalone at sites used to calibrate the mod-

els (based on cross-validation j), indicating that uncer-

tainties underlying the ENM and demographic model

components of niche-population models are not fully

additive. Fully additive model uncertainties would

have resulted in the prediction error of the niche-popu-

lation model being much larger than that of the ENM,

because the output from the ENM was used as a nested

input for the niche-population model. Niche-popula-

tion models were more skilful than ENMs and biophys-

ical-ENMs at reproducing occupancy in 2015 for H.

rubra and H. laevigata at independent reef locations

based on verification data generated by expert opinion.

However, all models incorrectly projected the presence

of abalone along the Coorong coast, and in parts of both

the Spencer Gulf and Gulf St Vincent, today. This is

probably because of a combination of predictor uncer-

tainty (Watts et al., 2011) and regional environmental

conditions not reflected in our model parameters – for

example, inshore rocky reefs in the Coorong region

tend to have small ephemeral abalone populations.

Furthermore, the region has undergone major human-

induced changes in hydrology (Shuttleworth et al.,

2005), a characteristic not captured by our models.

Predictor uncertainty could be potentially reduced in

future models by incorporating information on the

location of soft-sediment trawl fisheries, which are now

tracked accurately. This information could strengthen

the spatial accuracy of reef habitats and, in turn, predic-

tions of abalone occurrence in the Coorong and areas of

the upper Spencer Gulf and Gulf St Vincent (Fig. 1 –

sites that are marked as not unoccupied in 2015). Rapid

population growth, as predicted under the PCM refer-

ence scenario (Table 1) (driven by high August and low

March SST; Fig. S1), and observed across models of

varying complexity is also unlikely to occur. This is

because the PCM has poor retrospective skill (at least

compared to 7-model and CCSM) in reproducing recent

global and regional (Indian and Pacific Oceans) SST

records (Fordham et al., 2013b), leading to reduced

confidence in future projections (Fordham et al., 2011).

An important and additional strength of niche-popu-

lation models is their ability to be used in ‘simulation

experiments’ that evaluate the efficacy of alternative

climate-management options (Fordham et al., 2013a),

within an economic optimization framework (Wintle

et al., 2011). Because abalone are amenable to introduc-

tion and translocation (Dixon et al., 2006), our

niche-population model results could be used, in a

management context, to guide the translocation of H.

rubra and H. laevigata to future habitats predicted to be

climatically suitable and stable (Fordham et al., 2012b),

thereby (i) reducing the risk that the velocity of climate

change will outpace dispersal rate, and (ii) enhancing

resilience and potential sustainability of the abalone

fishery. By using a representative set of climate futures

in the underpinning forecast, the long-term ecological

and economic usefulness of establishing translocation

sites and refugia (to replenish stocks in surrounding

harvest zones) in regions consistently forecast to experi-

ence favourable future SSTs can be tested explicitly.

In conclusion, integrative ecological models that aim

to link habitat suitability with biological processes

should estimate range shifts under climate change

better than simpler models by accounting for important

biotic and abiotic processes and their interactions,

provided adequate data are available to determine

structural relationships and fit the associated parame-

ters (Fordham et al., 2013a). In this marine case study of

commercially important yet climatically sensitive

abalone stocks, we show the overriding importance of

considering metapopulation dynamics, as well as

biophysical processes and environmental relationships,

when examining the dynamics of ranges through time.
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