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INTRODUCTION

Understanding the mechanisms driving observed
patterns in species occurrences in space and time is a
key and challenging objective in ecology (Pimm et al.
1995, Gotelli et al. 2010). While global declines in

exploited marine fish species are well documented
(Jackson et al. 2001, Roberts 2002, Pauly et al. 2005),
the evidence for large shifts in distribution and abun-
dance of much of the world’s biota arising from a
warming climate is also mounting (e.g. Walther et al.
2002, Parmesan 2006, Traill et al. 2010). However,
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considerably less evidence is available for climate
change-induced shifts in the marine environment
(but see Hoegh-Guldberg & Bruno 2010, Last et al.
2011, Sumaila et al. 2011, Wernberg et al. 2011),
principally due to the physical and economic con-
straints of collecting long-term datasets in the marine
realm (Richardson & Poloczanska 2008). These prob-
lems are exacerbated for elusive migratory marine
species because the low probability of detection can
become an important issue in quantifying trends
(Gotelli et al. 2010) and in disentangling spatial and
temporal patterns.

The whale shark Rhincodon typus (Smith 1828) is a
highly migratory species (Sequeira et al. 2013) found
in warm and temperate waters around the globe
(Last & Stevens 1994). Aggregating seasonally near
the shore at specific coastal locations (e.g. Rowat
2007), it is an important species both for fishing
(Pravin 2000) and ecotourism industries (Rowat &
Engelhardt 2007). Due to the species’ poorly quanti-
fied population size, demography and behaviour, as
well as evidence for regional declines (Bradshaw et
al. 2007, 2008), the legal targeted commercial fish-
eries have been banned (Theberge & Dearden 2006,
Bradshaw et al. 2008), and whale sharks are now
classified as Vulnerable in the IUCN Red List (www.
iucnredlist.org). In contrast, whale shark ecotourism
is growing worldwide (e.g. Rowat & Engelhardt 2007,
Pierce et al. 2010, Hsu et al. 2012), but is highly
dependent on the expectation that the sharks will
return to the same locations every year.

Whale shark sighting rates within these locations
are highly variable, even within the same months
(e.g. de la Parra Venegas et al. 2011). Such variation
in local occurrence has been associated with fluctua-
tions in climatic signals such as El Niño events and
the Southern Oscillation index (Wilson et al. 2001,
Sleeman et al. 2010a). Several attempts have been
made to quantify trends in whale shark population
size and abundance (Meekan et al. 2006, Rowat et al.
2009a), although these studies have been based
mostly on data from near-shore aggregations com-
posed largely of juvenile males (Meekan et al. 2006).
Due to the transitory nature of whale shark occur-
rence, some have suggested that regional approaches
should instead be used to quantify broader-scale pat-
terns, spatial patterns and temporal trends (Rowat et
al. 2009b). However, expanding a study site from 1
aggregation to an entire region (which might include
multiple aggregation sites) inevitably results in
adding spatial complexity to the process.

Partitioning variance across spatial and temporal
gradients to detect patterns in species occurrence is

not usually straightforward, but can be addressed
statistically through the use of random-effects mod-
els (see Ogle 2009, Qian et al. 2010). These multi-
level, mixed-effects or hierarchical models have
been used extensively to understand temporal trends
in species assemblages (Gotelli et al. 2010), commu-
nity structure and patterns in the marine environ-
ment (e.g. MacNeil et al. 2009, Mellin et al. 2010),
abundance and biomass of species (Ruiz & Laplanche
2010) and biological responses to different environ-
mental conditions (Bedoya et al. 2011).

Using a long-term (1991 to 2007) and wide-extent
dataset of whale shark sightings in the Indian Ocean
collected by the tuna purse-seine industry, we pres-
ent an analysis incorporating both spatial and tempo-
ral elements to examine temporal trends of this spe-
cies at the ocean-basin scale. Following previous
work quantifying habitat suitability and seasonal
variation in whale shark relative abundance in the
Indian Ocean (Sequeira et al. 2012), our latest
approach now partitions the complex spatial and
temporal variation in whale shark occurrence pat-
terns. Specifically, we tested the hypothesis that
sighting probability remains constant over time, and
quantified the influence of global climatic signals on
temporal patterns of occurrence at a broad spatial
scale.

METHODS

We developed generalized linear mixed-effects
models (GLMM) sequentially, with the first step
assessing the evidence for a temporal trend in whale
shark occurrence, and a second testing the hypothe-
sis that sighting probability is correlated with varia-
tion in climatic indices. Below we detail the datasets
used (presence/absence data and sampling effort)
and the modelling steps (predictors and model de -
velopment).

Whale shark dataset

We used data recorded in logbooks from purse-
seine fishers registered under the Indian Ocean Tuna
Commission (Pianet et al. 2009). These logbooks con-
tain long-term (1991 to 2007) data on whale shark
occurrences (hereafter referred to as ‘sightings’)
derived from associated net-sets for tuna catch using
whale sharks as fish aggregation devices. A total of
1185 sightings were recorded during the sampling
period, including date and location at a 0.01° resolu-
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tion (i.e. latitude and longitude data were collected
using the GCS WGS84 system and made available in
units of decimal degrees to a precision of 0.01
degree). The dataset provided no indication of gen-
der for the sighted sharks. Due to substantial fluctua-
tion over time and higher numbers of sightings
occurring mostly in autumn (Fig. 1a), we used data
from this season to examine the inter-annual trends
in autumn whale shark occurrence (Fig. S1 in the
supplement at www.int-res.com/articles/suppl/m478
p185_supp.pdf shows spatial variation in occur-
rences). Seasonal patterns of whale shark occurrence
in the same dataset were previously described by
Sequeira et al. (2012).

Pseudo-absence generation

Whale shark sightings were presence-only, so we
generated pseudo-absences to produce the denomi-
nator of the logit function that allows for the binomial
estimation in our GLMM detailed below. For each

presence recorded, we randomly generated 100
pseudo-absences (1:100 ratio) both (1) in space by
randomly choosing non-presence grid cells over the
western Indian Ocean (function srswor, i.e. simple
random sampling without replacement, from the
{Sampling} package in R), and (2) in time by ran-
domly assigning to the selected point an autumn date
within the 17 yr interval (function srswr, i.e. simple
random sampling with replacement, from the {Sam-
pling} package in R; R Development Core Team
2011). The high presence to pseudo-absence  ratio
(1:100), which inevitably results in low prevalence
(0.01), allows a better representation of the ‘back-
ground’ available, which consisted of both spatial
(each grid cell) and temporal (a specific date within
the time period covered in the dataset)  components.

Fisheries effort data

Effort data (number of fishing days per month)
were recorded with a resolution of 5° within the area

covered by the fisheries (30° N to 30° S
and 35° to 100° E; grey area in Fig. 2),
giving a total of 1638 records (autumn
only) and 13 674 fishing days with
associated net-sets. The variables
‘effort’ and ‘number of sightings per
year’ are illustrated in Fig. 2. Because
the eastern part of the Indian Ocean
(east of the Maldives) was sampled
only in 1 year during autumn (1998;
Fig. S1), we used only the western
area of the Indian Ocean (west of the
Maldives as depicted in Fig. 3) in our
temporal analysis.

Spatio-temporal variation in sam-
pling effort can affect the ability to de-
tect temporal trends in occurrence
(Phillips et al. 2009), so we developed
a series of generalized linear models
(GLM) with a Poisson error distribution
using time in years (Time) as a predic-
tor for effort (in each of the 5° grid
squares sampled more than once dur-
ing autumn), to test whether the spatial
patterns in sampling effort were
evenly distributed throughout the
17 yr period. We compared the results
of these models with a null (intercept-
only) model by calculating the evi-
dence ratio — a bias-corrected index of
the likelihood of one model over an-
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Fig. 1. Rhincodon typus. (a) Total number of whale sharks sighted by tuna
purse-seine fisheries per month and per year. Grey bar = autumn (April to
June from 1991 to 2007). (b) Total number of whale sharks (WS) sighted in
autumn per year, overlaid with the values for the Indian Ocean Dipole (IOD
index; left) and sea surface temperature variation in Region 4 of the central
Pacific due to El Niño/La Niña events (NINO4 index; right). Black bars: median
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other (wAICc (GLM Time) : wAICc (GLM null); see ‘Models’
below for definitions) — for each model. To control for
inflation of Type I errors due to multiple testing across
grid squares, we used the Holm correction through
the Bioconductor {multtest} package (Pollard et al.
2005) in R (R Development Core Team 2011).

Model predictors

This section describes the predictors used in each
model step, detailing how we first accounted for tem-
poral variation both in effort and sightings (Step 1),
and then tested for correlations between observed
trends and changes in climatic predictors (Step 2).

Step 1

Because temporal and spatial variation are seldom
dissociated, we needed to include a term covering
the variation in spatial probability of whale shark
occurrence to test the hypothesis that the average
probability of sightings remained constant over time
within the large area under study. For this we used
the results derived from Sequeira et al. (2012), where
we fitted models of seasonal spatial distribution of
whale sharks in the Indian Ocean. Here we re-fitted
the whale shark distribution model for autumn
(Sequeira et al. 2012), including some modifications
to the likelihood estimation, pseudo-absence ratio

and covariate treatments (see the supplement at
www.int-res.com/articles/supp/m478p185_supp.pdf
for a detailed description of these changes). We then
used logit-scale predictions of the likelihood of whale
shark occurrence in autumn (spatial probability,
‘SpatialP’; Fig. S2 in the supplement) within each
9 km grid cell (resolution used by Sequeira et al.
2012) as an explanatory variable of whale shark
occurrence in the temporal models developed herein.
The inclusion of ‘SpatialP’ in the GLMM (see below)
accounts for possible spatial autocorrelation.

Temporal changes in effort can explain some of the
inter-annual variation detected in sightings; there-
fore, we also added ‘effort’ as a predictor in our tem-
poral models to account for its potential effect on the
temporal patterns observed. Because the mean effort
for autumn was already accounted for within the spa-
tial predictor, we only included the temporal varia-
tion around the mean (i.e. the 0-centred inter-annual
deviations around mean effort). We included both a
fixed and a random effect for time (‘year ’ and ‘Time’,
respectively) to account for inter-annual variability in
presences, allowing the random structure to contain
only information that could not have been modelled
with fixed effects (following Zuur et al. 2009).

Step 2

To test the hypothesis that inter-annual variation in
whale shark sightings was correlated with variation
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Fig. 2. Rhincodon typus. Exam-
ple of variation in fishing effort
(a,b) and number of whale
sharks sighted (c,d). Only 2 yr
of autumn (April to June from
1991 to 2007) data when effort
was highest (1997, a,c) and low-
est (2005, b,d) are shown. Light
grey area = total area sampled 

by the tuna purse-seiners
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in indices of sea surface temperature (SST) and air
pressure as reported previously in a near-shore
aggregation (Wilson et al. 2001, Sleeman et al.
2010a), we considered variation in climatic indices in
both the Indian and the Pacific Oceans. We tested 4
indices: (1) the Indian Ocean Dipole (IOD; Saji et al.
1999), (2) El Niño variation in the central Pacific
Region 4, 160° E to 150° W, 5° S to 5° N (NINO4; Burg-
ers & Stephenson 1999), (3) the Oceanic Niño Index
(ONI), i.e. 3 mo moving averages of SST in the Niño
3.4 Region (170 to 120° W, 5° S to 5° N) and (4) the
Southern Oscillation Index (SOI; Walker 1925). We
collected the online climatic indices for the total
period covered by the purse-seine fisheries from the
Earth System Research Laboratory (US Department
of Commerce, National Oceanic and Atmospheric
Administration, www.esrl.noaa.gov/index. html), the
Japanese Agency for Marine-Earth  Science and
Technology (www.jamstec.go.jp/frsgc/research/d1/
iod) and the Australian Government Bureau of Mete-

orology (www.bom.gov.au). To un der stand how the
different indices are associated with each other and
to assist interpretation of the model results, we inves-
tigated the correlation between the climatic predic-
tors using the pairs.panels function in the package
{psych} in R (R Development Core Team 2011) and
their monotonic relationships using Spearman’s rank
correlation (ρ). IOD is weakly collinear with both
NINO4 and ONI (Pearson coefficients = 0.02 and
−0.08, respectively), while the 2 latter predictors are
highly correlated (Pearson coefficient = 0.89; Fig. S3).
Spearman coefficients also showed collinearity only
between NINO4 and ONI (ρ = 0.8).

Models

We applied GLMMs with a binomial error distribu-
tion and a logit link function to compare the predictive
ability of different combinations of the predictors. The
mixed-effects models we developed in each step in-
cluded all possible combinations of the fixed and ran-
dom effects (Step 1), and each of the 4 individual cli-
matic predictors (Step 2). By including climatic
variables 1 at a time, we concurrently tested whether
replacing ‘Time’ by any of the climatic variables could
explain away any trends observed in Step 1.

In each step, we compared models based on Akaike’s
information criterion corrected for small sample sizes
(AICc; Burnham & Anderson 2004), which favours
models with higher predictive capacity when sample
sizes are large and tapering effects exist − as ex pected
to occur in our spatio-temporal models. We assessed
each model’s strength of evidence relative to the
entire model set by calculating AICc model weights
(wAICc) and used the percentage of de viance ex-
plained (%De) to quantify each model’s goodness-
of-fit. We retained the AICc top-ranked model from
the first step and used it in the second step as a con-
trol model for the more complex combinations with
climatic predictors. We developed all models in R
 version 2.11.1 (R Development Core Team 2011).

RESULTS

Fisheries effort analysis

The spatial analysis of effort (GLM models with
Poisson distribution) per grid cell (5° resolution)
demonstrated no evidence of temporal trend in effort
in ~60% of the grid cells (Fig. 3). In the remaining
cells, the evidence ratios of the models including
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Fig. 3. Fishing effort analysis across the western Indian
Ocean where the purse-seine fisheries operated in >1 yr
(green line = limit of the western Indian Ocean area con -
sidered). Squares = 5° area for which fishing effort data
were available, and colours = effort analysis results based
on the GLM evidence ratios (ER) of the Akaike’s information
criterion weight of ‘effort’ ~ ‘Time’ against the null model
(i.e., wAICc GLM Time:wAICc GLM null). Values inside
each square = estimates obtained for the coefficient of the
‘Time’ variable (when the null models were not ranked 

higher) after Holm correction
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‘Time’ were high (>> 150; Fig. 3), and effort generally
increased over time (estimated coefficients ranging
from 0.03 ± 0.008 to 0.23 ± 0.046 (mean ± SE); Fig. 3)
with the exception of only 4 cells where effort
decreased with time (coefficients ranging from −0.04
± 0.005 to −0.12 ± 0.02; Fig. 3). Two of these 4 declin-
ing-effort cells corresponded to the area where most
of the whale shark sightings occurred (compare Figs. 3
and S1).

Models

Step 1

The GLMM with the highest information-theoretic
support (wAICc = 0.45; Step 1) included the spatial
predictor (i.e. spatial predictions of the probability of

whale shark occurrence in autumn on a logit scale —
‘SpatialP’; Fig. S2), the 0-centred effort (inter-annual
variation around the autumn mean, i.e. the variation
not accounted for by the spatial predictor), and a
quadratic temporal trend with a random intercept
term accounting for the among-year variance
(Table 1). This model explained almost 60% of the
deviance in whale shark sighting probability. We
found evidence for a slight increase in the probability
of whale shark sightings for the first half of the sam-
pling period (1991−2000), and for a declining trend
over the last half (2001−2007; Fig. 4). However, total
wAICc was shared approximately evenly among the
2 top-ranked models (Table 1; only 1 of them includ-
ing the ‘Time’ predictor), indicating that the temporal
trend was only weak. Results for models not includ-
ing the spatial term (‘SpatialP’) generally performed
poorly relative to the other models in the set, with this
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Model k LL wAICc %De

Step 1
SpatialP + effort + Time + Time2 + (1| year) 7 −1956.08 0.454 57.0
SpatialP + effort + (1| year) 5 −1958.29 0.370 56.9
SpatialP + effort + Time + (1| year) 6 −1958.03 0.176 56.9
SpatialP + effort 5 −2531.80 <0.001 44.3
SpatialP + effort + Time 6 −2531.72 <0.001 44.3
SpatialP + Time + Time2 + (1| year) 6 −2707.72 <0.001 40.4
SpatialP + (1| year) 4 −2710.93 <0.001 40.3
SpatialP + Time + (1| year) 5 −2710.87 <0.001 40.4
effort + Time + Time2 + (1| year) 6 −3201.41 <0.001 29.6
effort + (1| year) 4 −3203.59 <0.001 29.5
effort + Time + (1| year) 5 −3202.95 <0.001 29.5
SpatialP + Time 5 −3313.77 <0.001 27.1
SpatialP 4 −3317.50 <0.001 27.0
Time + Time2 + (1| year) 5 −3995.69 <0.001 12.1
1 + (1| year) 3 −3998.67 <0.001 12.0
Time + (1| year) 4 −3998.23 <0.001 12.0
effort 4 −4025.96 <0.001 11.4
1 3 −4544.22 <0.001 0

Step 2
SpatialP + effort + Time + Time2 + NINO4 + (1| year) 8 −1861.75 0.81 59.0
SpatialP + effort + NINO4 + (1| year) 6 −1865.18 0.19 59.0
SpatialP + effort + Time + Time2 + ONI + (1| year) 8 −1926.15 <0.01 57.6
SpatialP + effort + ONI + (1| year) 6 −1929.97 <0.01 57.5
SpatialP + effort + Time + Time2 + IOD + (1| year) 8 −1954.44 <0.01 57.0
SpatialP + effort + IOD + (1| year) 6 −1956.63 <0.01 56.9
SpatialP + effort + Time + Time2 + (1| year) 7 −1956.08 <0.01 57.0
SpatialP + effort + (1| year) 5 −1958.29 <0.01 56.9
SpatialP + effort + Time + Time2 + SOI + (1| year) 8 −1956.00 <0.01 57.0
SpatialP + effort + SOI + (1| year) 6 −1958.16 <0.01 56.9
1 3 −4544.22 <0.01 0

Table 1. Rhincodon typus. Generalized linear mixed-effects models relating probability of whale shark occurrence to:
 ‘SpatialP’, a spatial predictor derived from previous spatial distribution models (Sequeira et al. 2012), ‘effort’, ‘Time’ (fixed
effect predictor for time in years) and a random effect for ‘year’ (Step 1); and global climatic predictors: IOD = Indian Ocean
Dipole, SOI = Southern Oscillation Index, NINO4 = El Niño in the central Pacific-Region 4, and ONI = Oceanic Niño Index
(Step 2). Shown for each model are the number of parameters (k), log-likelihood (LL), biased-corrected model evidence based
on weights of Akaike’s information criterion corrected for small sample sizes (wAICc) and the percentage of deviance
explained (%De). Best-performing models in each step are in bold. Models are ordered by decreasing wAICc. Values < 0.001 

are not shown
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predictor alone explaining 27% of the deviance
(Table 1). A positive relationship with the 0-centred
inter-annual deviations from mean (±SE) fishing
effort (coefficient estimate = 1.63 ± 0.06) indicates
that the number of sightings is higher when effort is
higher than average and vice versa.

Step 2

Including the index of SST in the central Pacific
(NINO4) in the highest-ranked model from Step 1
above resulted in the highest statistical support
(wAICc = 0.81). However, the percentage of deviance
explained (59%) was only slightly higher than the
model excluding the climatic predictor (57%). All
models that included a climatic predictor reflecting
variation in sea surface temperature (NINO4, IOD,
ONI) had higher support than those without climatic
variables (from Step 1), while the model including
SOI (relative to air pressure variation) performed
poorly even when compared to models excluding cli-
mate signals (Table 1). The partial effects of the cli-

matic variables showed that an increase in NINO4
(reflecting higher SST in the central Pacific Ocean)
had a positive effect on whale shark probability of
occurrence in the western Indian Ocean (Fig. 5), and
an increase in IOD (reflecting higher SST in the west-
ern part of the Indian Ocean) had a negative effect
(Fig. S4).

DISCUSSION

Access to a long-term dataset of whale shark sight-
ings covering the western sector of an entire ocean
basin provided a unique opportunity to analyse tem-
poral trends and variation in whale shark occurrence
at a scale more likely to encompass the range of this
highly migratory species, and for a greater pro portion
of the population than in previous studies. Overall,
our results highlighted a high inter-annual consis-
tency in whale shark distribution patterns, with the
spatial predictor (i.e. mean seasonal distribution)
alone accounting for 27% of the deviance. We also
found evidence for a modest peak in whale shark oc-
currences in the middle of the time series (~2000),
which prevailed after accounting for changes in
global climatic indices. To date, analogous temporal
analyses of whale shark occurrence have only been
done at the scale of single aggregations (~10s of km;
Sleeman et al. 2010a) covering only a small part of
this species’ range and only a small proportion of the
population (mostly male juveniles, Meekan et al.
2006). Thus, our results are the first to estimate
ocean-scale trends in occurrence that include several
known aggregation sites for the species, and it is the
first analysis to account simultaneously for spatial and
temporal components, including effort, that can mask
underlying trends in the probability of occurrence.

The high percentage of deviance explained by the
spatial predictor (27%) implies that distribution pat-
terns are annually consistent (autumn only), with a
higher probability of occurrence around the Mozam-
bique Channel. This consistency might be due to per-
manent characteristics of the area, such as physical
features enhancing upwelling, local productivity and
tolerable sea surface temperatures (Sequeira et al.
2012).

Modelling must ensure that variation in sampling
effort does not confound results (Dennis et al. 1999).
In our dataset, effort generally increased through
time, although there was a decline in the Mozam-
bique Channel (Fig. 3) where most sightings oc -
curred during the 17 yr (cf. Fig. S1). By including the
0-centred inter-annual deviations from mean fishing

191

Lo
g 

od
d

s 
of

 p
re

se
nc

e

−9

−8

−7

−6

−5

Year

a

b

P
ro

b
ab

ili
ty

 o
f p

re
se

nc
e

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0.000

0.001

0.002

0.003

0.004

0.005

Fig. 4. Rhincodon typus. Partial effect of time (a) on the log-
odds scale showing the rate of change and (b) on the proba-
bility scale, showing the effect of time on the probability of 

whale shark presence. Dashed lines: 95% CI



Mar Ecol Prog Ser 478: 185–195, 2013

effort in our models (which represent temporal fluc-
tuations from the mean within each grid cell;
Sequeira et al. 2012), we accounted for the contribu-
tion of effort in the temporal probability of occur-
rence. Combining the spatial predictor just with
effort, our models explained ~44% of the deviance
(Table 1), demonstrating the importance of incorpo-
rating both spatial and sampling effort components
in temporal models.

We hypothesize that the weak non-linear temporal
trend (Fig. 4) reflects variation in whale shark abun-
dance rather than a change in behaviour that could
lead to the lower sighting probability (e.g. a change
in diving behaviour). Whale sharks spend most of the
time at the surface (Sleeman et al. 2010b), a behav-
iour hypothesized to arise due to thermoregulatory
requirements (Thums et al. 2012). We therefore for-
ward 3 competing hypotheses to explain the non-lin-
ear trend observed: (1) a cyclic pattern in relative
abundance (e.g. associated with inter-oceanic migra-
tory behaviour), (2) a decline in population size (e.g.
induced by fisheries; Sequeira et al. 2013) or (3) a dis-
tributional shift due to changing habitat characteris-
tics (e.g. via climate change).

The complete trend observed, where the probabil-
ity of occurrence first increases and then decreases,
could represent an inter-decadal cycle (i.e. cycle over
15 yr) in whale shark occurrences, similar to strand-
ings of other large marine species in the Southern
Ocean (Evans et al. 2005) and fish catches in the
same region (Jury et al. 2010). In the latter study,
cycles were only just detectable even with annual
catch records spanning 40 yr. Our dataset, covering
<20 yr, revealed weak evidence for a peak in whale
shark occurrence that accords with the longer cycles
found for fish catches (Jury et al. 2010). Within the
Indian Ocean, the probability of whale shark occur-
rence during autumn is higher within the Mozam-
bique Channel (Sequeira et al. 2012). Being a highly
migratory species, the observed trend could be
reflecting variation in whale shark abundance asso-
ciated with migratory behaviour among ocean
basins. This being the case, the decline observed
would correspond only to a temporary decline in rel-
ative abundance, with the trend reversing at the
onset of a new cycle.

Focussing only on the declining segment of the
identified peak, and assuming it reflects a real
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decline in population size (such as that associated
with possible over-fishing), our results support previ-
ous data (Bradshaw et al. 2008) and predictions
(Bradshaw et al. 2007) from Ningaloo in Western
Australia that suggest a decline in population size. In
fact, the South-East Asian and Indian whale shark-
targeted fisheries (Pravin 2000, Hsu et al. 2012) were
banned due to the low numbers captured even with
increasing effort — a signal that can indicate popula-
tion decline. Despite the bans, targeted fisheries still
present a risk to whale sharks due to lack of enforce-
ment (Stewart & Wilson 2005), and there is evidence
that illegal fishing is still occurring (White &
Cavanagh 2007, Riley et al. 2009). Such illegal fish-
eries could still be responsible for on-going declines,
although it is currently impossible to determine to
what extent this might still be occurring. The unin-
tentional bycatch of whale sharks in other fisheries
(e.g. purse seiners; Romanov 2002) also remains
unquantified.

The decline segment is also concurrent with the
most pronounced warming observed over the last
decade, such that a related hypothesis where latitu-
dinal shifts in distribution resulting from rising water
temperatures (as suggested by Sequeira et al. 2012)
driven by global climate change could be influential.
Even though we found that autumn distribution pat-
terns were constant within the area considered, the
decline could also arise if environmental conditions
allowed a shift in distribution to areas outside our
dataset’s spatial coverage, such as farther south,
closer to the shores of South Africa or south of Mada-
gascar (Fig. 3). Our models’ estimates suggest that
sighting probability increases with rising sea surface
temperature in the central Pacific Ocean (i.e. high
NINO4; Fig. 4) and reduced temperatures in the
Indian Ocean (i.e. low IOD; Fig. S4). Despite IOD
being a climatic index directly measured in the
Indian Ocean, our models gave higher support for
NINO4 as a predictor. However, there were some
occasions where a few whale sharks were sighted
despite high NINO4 values, that is, high sea surface
temperatures in the central Pacific Ocean (Fig. 1).
This is particularly interesting for 1997, when not
only the NINO4 index was high, but the sampling
effort was also maximal (Fig. 2). Our data covered
mainly the western Indian Ocean, but there was a
peak in sightings at Ningaloo in 1997 (Wilson et al.
2001). The same occurred in 1992 (Wilson et al. 2001)
and 2002 (see Sleeman et al. 2010a), when NINO4
was high and few sharks were observed in the west-
ern Indian Ocean. In both 1997 and 2002, IOD was
positive (0.04 to 0.88; i.e. temperatures in the western

Indian Ocean were higher than normal) and coin-
cided with a decrease in probability of occurrence in
the western Indian Ocean (Fig. S4). When IOD is pos-
itive, the thermocline deepens in the eastern Indian
Ocean, resulting in more intense upwelling and
greater surface productivity in that area (Behera &
Yamagata 2003). Saji et al. (1999) first described IOD
as independent of El Niño/Southern Oscillation,
although others suggested possible associations be -
tween them (reviewed by Maity et al. 2007). Under-
standing how these coupled sea surface−atmosphere
phenomena are related is not our aim, but the (weak)
support for Pacific and Indian Ocean indices suggest
some possible effects of broad-scale oceanic climate
events influencing whale shark habitat use.

Despite cycles in fish abundance in the western
Indian Ocean being directly related to environmental
fluctuations, most of the variance in fish catch can be
explained with estimates of local productivity (Jury
et al. 2010). Changes in climate are already affecting
the base of the principal food web, viz. phytoplank-
ton (e.g. Edwards & Richardson 2004). This evidence,
coupled with our demonstration of possible climate-
influenced distribution of the world’s largest fish,
demonstrates a need to predict how species will
respond to future climate scenarios. As such, long-
term management of whale sharks requires both a
better understanding of basic ecology and demogra-
phy, and how these will be altered as the oceans
warm.
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