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Abstract

The use of long-term population data to separate the demographic role of climate from density-modified demographic
processes has become a major topic of ecological investigation over the last two decades. Although the ecological and
evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which
climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly
variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically
unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation,
disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory
density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial
gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-
theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series
length) and phylogenetic non-independence. Climatic factors explained , 1% of the remaining variation in density-
feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation
variables. We could not link our results directly to other published studies, because ecologists use contrasting responses,
predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a
macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial
scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this
phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most
species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with
climate.
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Introduction

The quality of the food or the temperature prevailing, however, may have an

important effect upon the level at which a population is adjusted by governing

factors [1]

The interplay of density-independent (environmental forcing via

weather, climate, or food supply) and density-dependent (i.e.,

trophic and social interactions between individuals) drivers of

population change through long-term time series of population

abundance has become a major area of ecological research over

the last two decades [2,3]. Many of those studies concentrate on

single species (e.g., [4–6]), while cross-taxa patterns have only been

compared for a few phylogenetically and/or trophically related

species, with increasing attention being devoted to the strength of

density feedbacks using a variety of modelling methods (e.g., [7–

13]). After much research effort and impressive mathematical

development to deal with global patterns of population dynamics

(e.g., [13]), we still lack an understanding of how the demographic

role of density feedbacks varies among species over broad climate

gradients. Ecologists can even question whether those gradients

are biologically meaningful, and hence detectable.

For relatively well-studied taxa such as large herbivores, there is

a general appreciation that the strength of ‘compensatory density

feedback’ [14] should be milder in harsher environments [15]

because harsh climate conditions should prevent populations from

reaching densities at which social and trophic interactions might

strongly reduce population growth. Theoretical postulates are

disparate about supporting the former prediction. Thus, because

the metabolic rates of organisms are shaped by environmental

temperature, metabolic theory proposes that the rates of resource

exploitation, and therefore the intensity of mechanisms modified

by compensatory density feedbacks (e.g., competition, disease,

parasitism, predation,), should be higher in warmer (i.e., more

benign) environments [16]. In contrast, Wilmers et al. [17] have

modelled that the accumulation of years of benign environmental

conditions can gradually promote fertility, recruitment and
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survival, but populations are then more vulnerable to compensa-

tory density feedbacks when harsh environmental conditions

return. Those density feedbacks are likely to occur because long-

term climate patterns alter carrying capacities and the magnitude

of competition for vital resources such as food or water; yet the

analyses of time series of abundance incorporating shifts in climate

variables as proxies for carrying capacity have only been applied to

few species (e.g., [6,18]). In the only cross-taxa study correlating

density-feedback strength (from time series of abundance) explic-

itly with broad climate variables (single, average values per

population), Wang et al. [19] showed that for two large ungulates

(bison Bison bison and elk Cervus elaphus) in North America, colder

winter temperature and temporal heterogeneity accentuated the

model-averaged compensatory density-feedback strength, i.e.,

feedbacks were in fact stronger in response to harsher (i.e., colder

or more variable) climates.

Herein, we expand the taxonomic coverage of the analytical

approach of Wang et al. [19] over 146 bird and mammal species

comprising slow to fast life histories and a spatial extent of 97

localities in 28 countries. We hypothesize that broad climate

variables can explain variation in compensatory density feedbacks

across species. We quantified such variation by collating a dataset

comprising geo-referenced, long-term censuses of population size

and average temperature and precipitation in the last five decades

at a coarse spatial resolution (21 km2). We also revise caveats in

quantifying global patterns of density feedback.

Materials and Methods

Data
We used year-round time series of abundance of 91 birds and 55

mammal species (1 population per species) from two previous

studies [20,21]). Of those studies, we had retained time series of

well-defined populations, mostly resident in their native ranges or,

for migratory birds, in their breeding localities; we excluded

populations from the smallest oceanic islands (e.g., Gough, Cosin,

Marion) and remote areas (e.g., Antarctica) for which we could not

obtain adequate climatic data (see below). Our dataset had a

median time-series length of 26 years with 95th percentile range of

10 to 97 years, and represented 97 different localities in 28

countries (see map in Figure S1 in File S1, and time series of

abundance in File S2) – 88% of the populations were from the

Northern Hemisphere (mainly Europe and North America). The

species covered body lengths (from beak/nose tip to tail end)

between 90 and 1520 mm in birds, and between 24 and 5000 mm

in mammals – the distributions of (log-transformed) body lengths

was nearly symmetric, indicating no bias towards neither end of

the body-size spectrum.

We geo-referenced the locality of each population as the

latitude/longitude reported in the ecological literature from which

we retrieved the census data. For each population’s geographic

position, we collated one broad estimate of four environmental

variables from the Bioclim suite (www.worldclim.org), which

represented annual trends and seasonality between 1950 and

2000: (i) mean annual temperature (uC), (ii) temperature season-

ality (sd, uC), (iii) mean annual precipitation (mm), and (iv)

precipitation seasonality (CV, mm). These estimates are derived

from monthly data collected by weather stations at a 1-km2

resolution. They are calculated as follows: (i) temperature (or

precipitation) estimates at month i are averaged across meteoro-

logical stations within a given spatial resolution and (ii) annual

estimates at year i are the mean of monthly estimates. Thus, our

model variables are means, standard deviations (or coefficients of

variation) of annual estimates of temperature (or precipitation) for

1950–2000 [22]. These data are widely used in species distribution

models (e.g., [23,24]). We used interpolated data with 2.5u
resolution (21 km2) [22] because that was the prevailing resolution

of our population data. The magnitudes of each environmental

variable at 2.5 u resolution and 5 u (42 km2) or 10 u (84 km2)

resolutions were strongly correlated (all Spearman r.0.99), so we

are confident that our results are consistent at those three spatial

scales. To assess the representation of global climates in our

dataset, we categorized our localities according to the Köppen-

Geiger classification [25] by entering their latitude and longitude

in a climate layer superimposed in Google Earth [26] – see Results

and Supporting Dataset (File S2).

To satisfy the assumptions of time-series analyses, and minimize

the confounding effects of measurement error, authors either set

stringent criteria for data selection [13,27], or use state-space

models [28–30], which themselves are not, however, exempt of

caveats [30] and add further model complexity to cross-taxa

comparisons. We replicated all analyses for the total sample of 146

species (as above), and a subset of 120 species (76 birds, 44

mammals) from 94 localities and 26 countries, after meeting

stringent criteria of stationarity, trending, outliers and missing

values following Herrando-Pérez et al. [20]. These criteria are

explained in Supporting Information (File S1). For the core dataset

from which most of our series was extracted, Herrando-Pérez et al.

[20] showed the same model rankings and similar goodness of fit

in observed and simulated time series after incorporating 5%

measurement error in birds and 10% in mammals.

Density feedback
We estimated strength of density feedback through the

Gompertz model [31,32], i.e., the slope of the relationship of the

intrinsic growth rate r = loge(Nt+1/Nt)) versus population size on a

log scale, such that r = a + b loge (Nt) + et, where r = proportional

change in population size between consecutive time steps, Nt = the

population size at time t, a = intercept, b = strength of density

feedback on r, and et = Gaussian random variable with a mean of

zero and a variance s2 reflecting uncorrelated stochastic variability

in r. Feedback strength in this model expresses change in r between t

and t+1 per unit change in log population size (i.e., through the

interplay of component density feedbacks on survival and fertility

rates [33]).

There are four important aspects of our study to consider: (1) we

focused only on compensatory density feedbacks occurring

between consecutive years, which are common signals of intra-

specific competition for food resources [34], and so we did not

investigate delayed feedbacks occurring every other year (or longer

time lags) that are often attributed to predators and parasites

[34,35]; (2) the Gompertz model is a measure of compensation on

a proportional (logarithmic) scale, thus it is invariant to the

absolute value of the carrying capacity of the environment, and no

scaling is required to compare density-feedback strength across

species; (3) we measured density feedbacks, but did not test for

population regulation. Density feedback and population regulation

are not synonymous [14]; therefore, our results are not compa-

rable to studies examining regulatory dynamics. Such studies often

show contradictory results even from the same datasets because

authors use different models to produce rival conceptualizations of

regulation (e.g., [36,37]); (4) finally, Knape and de Valpine [13]

used a linear autoregressive model incorporating time series of both

population abundance and climate, whereas we only used time

series of abundance and one single, average estimate of each of the

four climate variables at each study site. In so doing, we are testing

a different hypothesis from that examined by Knape and de

Valpine [13] (see below and Discussion).
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Because the Gompertz model is measured on a proportional

scale, it characterizes the multiplicative nature of demographic

rates better than the Ricker-logistic model (linear relationship of r

to density) [38], and unequivocally informs the magnitude of the

compensatory response of demographic rates to changes in

population size relative to nonlinear models [39]. Furthermore,

the Gompertz model has performed robustly in describing the

general dynamics of populations of birds and mammals over a

wide range of body sizes (e.g., [40–47]), is present in multi-model

inference scenarios where competing models are contrasted

[6,18,42,48,49], is the top-ranked model in meta-analyses of

hundreds of species in which various alternatives have also been

evaluated (e.g., [50]), and has been used in theoretical develop-

ment about density feedback (e.g., [28]). We avoided fitting the

fully parameterized h-logistic model [i.e., Ricker-logistic model

with a shape parameter allowing for a non-linear tendency to

carrying capacity] due to recent caveats of application to analyses

of time series [21,51], or other highly parameterized analogues

(e.g., hyperbolic growth). Most species were from temperate and

polar regions, the demographic rates of which are subject to strong

annual seasonality, so we deemed year-round demographic

estimates appropriate measures of population turnover.

We stress that our study attempted to capture gross environ-

mental gradients, not aspects of (regional) climate change. Further,

although some time series of abundance extended a few years

beyond the temporal window of the climate data (1950–2000), the

overall average variation in temperature (or precipitation) carries

regional variation across all regions notwithstanding. Moreover,

there is no obvious way one could ‘standardize’ the climate metrics

with sufficient justification to account for regional warming trends.

Modelling
We included nine models in our model set (Table 1). With

strength of compensatory density feedback (none of the target time

series was depensating, so strengths were invariably negative) as

the common response, the null model equated time-series length

(control variable, see below), and the remaining eight models

included a single environmental variable (four models), and each

temperature variable with one of the two precipitation variables

(four models). Temperature variables were poorly correlated with

precipitation variables (Spearman r , |0.3| for all cross-paired

correlations, Figure S2 in File S1). We converted the strengths of

compensatory density feedback to the square root of their absolute

(otherwise negative) values to meet model assumptions, which we

checked in QQ and residual plots. Time-series length correlates

positively with increasing statistical support for density feedback in

multiple-species studies [50], so we accounted for this correlation

by including this in all models. We log-transformed time-series

length and the two precipitation variables to approximate a linear

relationship with the response. We could not fit more complex

models due to available sample size [52], while interaction terms

between continuous variables would be of difficult to interpret in

the context of our analyses (broad climate estimates across 28

countries). To account for extreme climatic conditions, we applied

our approach to two additional model sets including another four

Bioclim variables. We substituted mean temperature and precip-

Table 1. Density feedback and mean climate variables.

Taxa Top-ranked models wAICc %Variance ER Top rank

BIRDS Strength , q 0.29 [0.25, 0.31] 3.6 [3.2, 4.2] - 100 (0)

Strength , q + mT 0.13 [0.10, 0.16] 3.6 [3.2, 4.2] 2.2 0 (33)

Strength , q + mP 0.13 [0.11, 0.15] 3.6 [3.2, 4.2] 2.2 0 (42)

Strength , q + sT 0.12 [0.10, 0.16] 3.6 [3.2, 4.2] 2.3 0 (25)

Strength , q + sP 0.10 [0.09, 0.10] 3.6 [3.2, 4.2] 3.0 0 (0)

Strength , q + mT + mP 0.06 [0.04, 0.08] 3.5 [3.1, 4.1] 5.0 0 (0)

Strength , q + mT + sP 0.05 [0.04, 0.06] 3.6 [3.2, 4.2] 6.3 0 (0)

Strength , q + sT + mP 0.09 [0.07, 0.13] 3.5 [3.1, 4.1] 3.3 0 (0)

Strength , q + sT + sP 0.04 [0.03, 0.05] 3.6 [3.2, 4.2] 7.2 0 (0)

MAMMALS Strength , q 0.12 [0.07, 0.20] 2.1 [1.8, 2.5] 1.9 4 (19)

Strength , q + mT 0.24 [0.15, 0.37] 1.8 [1.6, 2.3] - 82 (11)

Strength , q + mP 0.04 [0.02, 0.06] 2.1 [1.8, 2.5] 6.2 0 (0)

Strength , q + sT 0.11 [0.05, 0.21] 1.9 [1.7, 2.3] 2.1 3 (20)

Strength , q + sP 0.11 [0.05, 0.22] 1.9 [1.7, 2.3] 2.2 7 (6)

Strength , q + mT + mP 0.07 [0.05, 0.11] 1.8 [1.6, 2.3] 3.5 0 (0)

Strength , q + mT + sP 0.13 [0.07, 0.22] 1.8 [1.6, 2.2] 2.0 2 (34)

Strength , q + sT + mP 0.04 [0.02, 0.06] 1.9 [1.7, 2.3] 6.5 0 (0)

Strength , q + sT + sP 0.12 [0.07, 0.20] 1.8 [1.6, 2.1] 2.0 2 (10)

Akaike’s information criterion (AICc) support for the model set correlating temperature and precipitation variables1 to strength of compensatory density feedback for
birds (91 species) or mammals (55 species) (Figure 1). All models were fitted through phylogenetic generalized least-squares regression, and model-ranking descriptors
(wAICc, % variance and ER)2 are medians from 100 bootstrapped samples [95th percentile ranges].
1mT = mean annual temperature (uC), mP = mean annual precipitation (mm); sT = seasonality of temperature (sd, uC), and sP = seasonality of precipitation (CV). The
model set equated q as control variable (i.e., present in all models), eight combinations of climate variables [mT | mP | sT | sP | mT+mP | mT+sP | sT+mP | sT+sP], and a
null model with only q (time-series length, years).
2wAICc = model probabilities given each dataset and model set; %Variance = % variance in density-feedback strength explained by each model within the set; ER =
evidence ratio of first model over the remaining models according to wAICc; and Top rank = times each model was top-ranked over the 100 bootstrapped samples
(times each model was second-ranked).
doi:10.1371/journal.pone.0091536.t001
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itation by minimum temperature in the coldest month and

precipitation in the driest month in the second set (Table 2), and

by maximum temperature in the warmest month and precipitation

in the wettest month in the third set (Table 3). We opted for three

model sets, instead of one set with numerous variables, to

minimize collinearity issues (Figure S2 in File S1). We present

the raw values of the response and all variables in the Supporting

Dataset (File S2).

We fitted our data using phylogenetic generalized least-squares

regression (PGLS). PGLS incorporates the phylogenetic covari-

ance between taxa into the calculation of the effect sizes of the

explanatory variables, and so accounts for the phylogenetic non-

independence of species relatives [53,54]. Phylogenetic relation-

ships were based on recent species-level molecular phylogenies for

birds [55] and mammals [56] pruned to the species available in

our dataset. We ranked model support by means of Akaike’s

information criteria corrected for finite sample size, AICc [57]. We

calculated model ranking and effect sizes on 100 bootstrapped

samples of the response and explanatory variables measured in all

species and localities (e.g., as in [20]). Bootstrapping accounted for

the fact that, of the 97 study localities (see Methods, Figure S1 in

File S1), each of 19 localities contributed time series of abundance

from two to 12 species (47% of the dataset). To avoid correlations

of the response within those localities, each of the 100

bootstrapped samples consisted of a bootstrapped sample of

species from localities contributing one time series of abundance

and one species selected randomly from each of the localities

contributing more than one time series of abundance. Herrando-

Pérez et al. [20] used 500 and 1,000 bootstrapped repetitions and

found similar results and identical ecological interpretation. We

measured relative model support across the model set by the

medians and 95th percentile ranges of the model probabilities

(wAICc) over all bootstrapped samples. Further, we used model

averaging [52] to estimate the coefficient of the effect size of each

climate variable on the strength of compensatory density feedback.

Thus, we summed (over the 9 models in a set) wAICc for each

model containing a given climate variable weighted by its effect

size as a measure of model-averaged effect size. To compare the

effect sizes of all explanatory variables (which had disparate units

and ranges), we applied a post hoc standardization whereby we

multiplied model-averaged effect sizes by the product variable i 6
sd(response)/sd(variable i). We calculated standardized model-aver-

aged effects sizes as their median values and 95th percentile ranges

over all bootstrapped samples.

Finally, our previous research has shown the need to control for

body size when looking at patterns of change in density feedback

across multiple species [20]. A substantial component of the

phylogenetic signal in density-feedback strength was attributed to

body size. We did also fit generalized linear mixed-effects models

(GLMM, [58]) for all taxa, and through generalized linear models

(GLM) for birds and mammals separately, that included body size

as a fixed effect (Text S2, Table S8 in File S1). However, this

approach did not provide any additional information over the

PGLS analyses.

In summary, our analyses quantified effect sizes that equate the

magnitude of change in density-feedback strength in response to

temperature or precipitation, over and above any effects due to

time-series length and phylogenetic relatedness among species. We

report PGLS results for all species in the main text (Figures 1–3,

Tables 1–6). The Supporting Information covers File S1 with

Table 2. Density feedback and minimum climate variables.

Taxa Top-ranked models wAICc %Variance ER Top rank

BIRDS Strength , q 0.24 [0.21, 0.27] 3.6 [3.1, 4.2] - 78 (21)

Strength , q + minT 0.13 [0.11, 0.15] 3.6 [3.0, 4.1] 1.9 0 (1)

Strength , q + minP 0.21 [0.17, 0.25] 3.5 [3.0, 4.1] 1.1 20 (78)

Strength , q + sT 0.10 [0.08, 0.13] 3.6 [3.1, 4.2] 2.4 3 (47)

Strength , q + sP 0.08 [0.07, 0.09] 3.6 [3.1, 4.2] 3.0 0 (0)

Strength , q + minT + minP 0.09 [0.07, 0.11] 3.5 [3.0, 4.0] 2.6 0 (0)

Strength , q + minT + sP 0.04 [0.04, 0.06] 3.6 [3.0, 4.1] 5.6 0 (0)

Strength , q + sT + minP 0.08 [0.07, 0.10] 3.5 [3.0, 4.0] 2.8 0 (0)

Strength , q + sT + sP 0.03 [0.03, 0.04] 3.6 [3.1, 4.2] 7.5 2 (0)

MAMMALS Strength , q 0.16 [0.09, 0.23] 2.1 [1.8, 2.4] - 24 (26)

Strength , q + minT 0.13 [0.07, 0.19] 1.9 [1.7, 2.2] 1.2 5 (9)

Strength , q + minP 0.06 [0.04, 0.08] 2.0 [1.8, 2.4] 2.6 0 (0)

Strength , q + sT 0.15 [0.08, 0.24] 1.9 [1.7, 2.2] 1.0 28 (26)

Strength , q + sP 0.13 [0.07, 0.26] 1.9 [1.7, 2.3] 1.2 19 (16)

Strength , q + minT + minP 0.04 [0.03, 0.06] 1.9 [1.6, 2.2] 3.5 0 (0)

Strength , q + minT + sP 0.11 [0.07, 0.18] 1.8 [1.6, 2.0] 1.5 1 (6)

Strength , q + sT + minP 0.05 [0.03, 0.08] 1.9 [1.7, 2.2] 2.9 0 (0)

Strength , q + sT + sP 0.14 [0.10, 0.22] 1.8 [1.6, 2.0] 1.1 23 (17)

Akaike’s information criterion (AICc) support for the model set correlating temperature and precipitation variables1 to strength of compensatory density feedback for
birds (91 species) and mammals (55 species) (Figure 2). All models were fitted through phylogenetic generalized least-squares regression, and model-ranking
descriptors (wAICc, % variance and ER)2 are medians from 100 bootstrapped samples [95th percentile ranges].
1minT = temperature of the coldest month (uC), minP = precipitation of the driest month (mm); sT = seasonality of temperature (sd, uC), and sP = seasonality of
precipitation (CV). The model set equated q as control variable (i.e., present in all models), eight combinations of climate variables [minT | minP | sT | sP | minT+minP |
minT+sP | sT+minP | sT+sP], and a null model with only q.
2Abbreviations of AICc metrics are as in Table 1.
doi:10.1371/journal.pone.0091536.t002
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PGLS for the high-quality data subsets (Figures S3–S5, Tables S2–

S7 in File S1), GLMM and GLM results (Figures S6, S7, Tables

S9–S12 in File S1), and additional bibliographic references; and

File S2 with the complete dataset.

Results

The strength of compensatory density feedback ranged from –

1.55 to –0.01 in birds (median = –0.49, 95th percentiles of [–1.21,

–0.05]) and from –1.50 to –0.01 in mammals (median = –0.32

[–1.23, –0.02]). Between 1950 and 2000, the study localities had

mean temperatures that varied from –11.9 to 26.1 uC (median =

8.8 [–0.9, 18.1]) and from –11.5 to 22.7 uC (median = 7.0 [–3.6,

22.7]) for birds and mammals, respectively. Considering correla-

tions between climate variables and latitude or longitude (Figure S2

in File S1), mean temperature decreased in bird (r = –0.75) and

mammal (r = –0.50) localities from low to high latitudes [likewise

for temperature of the hottest month in birds (r = –0.66)]. On the

other hand, mean precipitation varied from 138 to 2341 mm

(median = 751 [355, 1820]) and from 98 to 2475 mm (median =

669 [165, 1347]) for bird and mammal localities, respectively. All

precipitation variables were poorly correlated with latitude or

longitude (Figure S2 in File S1). Our dataset represented the full

range of Köppen-Geiger ‘main climates’ worldwide [25], includ-

ing ‘warm temperate’ (47% of species’ localities), ‘snow’ (35%),

‘arid’ (10%), ‘polar’ (7%) and ‘equatorial’ (, 1%). A total of 13 of

the 30 Köppen-Geiger ‘climate types’ were captured, with a

predominance of ‘warm temperate’ (31%) and ‘snow’ (17%) both

with a fully humid precipitation regime and a warm summer

(Table S1 in File S1).

When we contrasted our model sets expressing strength of

compensatory density feedback as a function of climate, single

models only explained between 1.8 and 3.6 of the median

variation (over all bootstrapped samples, see Methods) in feedback

strength across birds or mammals (Tables 1–3). Most importantly,

the control variable (time-series length) explained most or all of

such variation (1.9 to 3.6%). The model including only the control

variable (null model) was top-ranked in birds (Figures 1–3) in 69 to

100% of the bootstrapped samples and had 1.1 to 7.7 more

support than other models in a set as inferred from evidence ratios

of model probabilities (Tables 1–3). For mammals, the model

including time-series length and mean annual temperature was

top-ranked (Figure 1) in 82% of the bootstrapped samples, and

had between 1.9 and 6.5 times more support than other models in

the set (Table 1). Therein, the null model was top-ranked in the

model sets including minimum and maximum climate variables

(Figures 2, 3, Tables 2, 3).

Median model-averaged effect size (standardized over all

explanatory variables, see Methods) was highest for the control

variable of time-series length in all model sets for birds and

mammals (Tables 4–6). All temperature variables had effect sizes

near zero. On the other hand, density-feedback strength was

negatively correlated with precipitation seasonality in mammals

(Figures 1–3, Tables 4–6) and positively correlated with mean

precipitation in birds (Figure 1, Table 4). Precipitation of the

wettest month had the highest effect size among climate variables,

being positive for birds (Table 6) and negative for mammals (Table

6). We replicated our model contrasts for bird and mammal data

subsets including high-quality time series, after accounting for

stationarity, trending, outliers and missing values (criteria

Table 3. Density feedback and maximum climate variables.

Taxa Top-ranked models wAICc %Variance ER Top rank

BIRDS Strength , q 0.24 [0.17, 0.28] 3.7 [3.1, 4.3] - 69 (25)

Strength , q + maxT 0.09 [0.06, 0.12] 3.7 [3.1, 4.3] 2.6 0 (0)

Strength , q + maxP 0.17 [0.14, 0.20] 3.7 [3.0, 4.2] 1.4 2 (51)

Strength , q + sT 0.10 [0.08, 0.12] 3.6 [3.0, 4.2] 2.4 0 (0)

Strength , q + sP 0.08 [0.06, 0.09] 3.7 [3.1, 4.3] 3.0 0 (0)

Strength , q + maxT + maxP 0.06 [0.04, 0.08] 3.7 [3.0, 4.2] 4.0 0 (0)

Strength , q + maxT + sP 0.03 [0.02, 0.04] 3.7 [3.0, 4.3] 7.2 0 (0)

Strength , q + sT + maxP 0.18 [0.11, 0.36] 3.4 [2.9, 4.0] 1.4 29 (2)

Strength , q + sT + sP 0.03 [0.03, 0.04] 3.6 [3.0, 4.2] 7.4 0 (0)

MAMMALS Strength , q 0.13 [0.07, 0.19] 2.1 [1.8, 2.4] 1.0 12 (13)

Strength , q + maxT 0.13 [0.08, 0.20] 2.0 [1.7, 2.3] - 25 (14)

Strength , q + maxP 0.12 [0.08, 0.16] 2.0 [1.7, 2.3] 1.1 1 (11)

Strength , q + sT 0.13 [0.06, 0.23] 2.0 [1.6, 2.3] 1.1 12 (29)

Strength , q + sP 0.11 [0.06, 0.21] 2.0 [1.7, 2.2] 1.2 18 (5)

Strength , q + maxT + maxP 0.04 [0.02, 0.07] 2.0 [1.7, 2.3] 3.4 0 (0)

Strength , q + maxT + sP 0.06 [0.03, 0.12] 1.9 [1.6, 2.2] 2.4 0 (0)

Strength , q + sT + maxP 0.13 [0.07, 0.24] 1.8 [1.5, 2.1] 1.1 17 (15)

Strength , q + sT + sP 0.12 [0.06, 0.22] 1.8 [1.5, 2.0] 1.0 15 (13)

Akaike’s information criterion (AICc) support for the model set correlating temperature and precipitation variables1 to strength of compensatory density feedback for
birds (91 species) or mammals (55 species) (Figure 3). All models were fitted through phylogenetic generalized least-squares regression, and model-ranking descriptors
(wAICc, % variance and ER)2 are medians from 100 bootstrapped samples [95th percentile ranges].
1maxT = temperature of the hottest month (uC), maxP = precipitation of the wettest month (mm); sT = seasonality of temperature (sd, uC), and sP = seasonality of
precipitation (CV). The model set equated q as control variable (i.e., present in all models), eight combinations of climate variables [maxT | maxP | sT | sP | maxT+maxP |
maxT+sP | sT+maxP | sT+sP], and a null model with only q.
2Abbreviations of AICc metrics are as in Table 1.
doi:10.1371/journal.pone.0091536.t003
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explained in Text S1, File S1). Our results were upheld in that

time-series length explained most variation in density-feedback

strength over bird and mammal species (Tables S2, S4, S6 in File

S1), while effect sizes were of similar magnitude and sign as for the

PGLS on the full datasets (Figures S3–S5, Tables S3, S5, S7 in File

S1). Model fitting through GLMM and GLM confirmed that the

null model (including only the control variables of time-series

length and body size) was top-ranked in all model contrasts, and

had 19 (all taxa), 10 (birds) and 2 (mammals) times more median

information-theoretic support than any second-ranked model

including climate variables (Figures S6, S7, Tables S9, S11 in

File S1), and the coefficients of all climate predictors were near 0

(Tables S10, S12 in File S1).

Discussion

We found negligible support for the hypothesis that spatial

variation in broad-scale and long-term precipitation and temper-

ature variables can explain spatial variation in strength of

compensatory density feedback, based on censuses of 146 species

of birds and mammals. We detected effects comparable to those of

the control variable (time-series length) for (particularly) precipi-

tation of the wettest month but, given the poor goodness of fit of

our models, the biological meaning of those effects can only be

suggestive. Our study is the first published quantitative assessment

of those correlations, including controls for taxonomic non-

independence and allometry, and a quantification of relative effect

sizes across more than two taxonomic orders. Our results contrast

with the strong correlations reported for ungulates (several

populations of two species) in the only cross-taxa study using an

analogous modelling framework [19]. Such apparent discrepancy

might reflect an interplay between density-dependent and -

independent factors at the population level that does not leave a

species-specific signal (see below).

In another relevant cross-taxa study, Knape and de Valpine

[13] modelled (via autoregression) fluctuations in population size

(rather than our metric of density-feedback strength) in response to

immediate and delayed density feedback, weather (temperature,

precipitation) and climate (North Atlantic and Southern oscilla-

tions) for 492 populations of mammals, birds and insects (327

species; J. Knape, pers. comm.). This showed that model-averaged

prediction error (of population size from one year to the next) was

poorly correlated with latitude – no phylogenetic or allometric

control was applied. Again, the lack of pattern of climate signals in

population dynamics across species contrasts with unequivocal

signals found in some well-studied, single populations in both

terrestrial and aquatic ecosystems [2]. For instance, in Soay sheep

(Ovis aries) at Hirta (St Kilda Archipelago, Scotland), broad climatic

indices are robust predictors (better than local weather) of

population change because pulses of mortality (mainly by

Figure 1. Density feedback and mean climate variables. Model probabilities (left panels; Table 1) and standardized wAICc-averaged effect sizes
(right panels; Table 4) result from contrasting 9 models with strength of compensatory density feedback from time series of abundance (response)
and combinations of 6 explanatory variables including time-series length (q, years), mean annual temperature (mT, uC), mean annual precipitation
(mP, mm), seasonality of temperature (sT = sd, uC) and seasonality of precipitation (sP = CV). Models were fitted as phylogenetic generalized least-
squares regression for two datasets comprising 91 bird and 55 mammal species, respectively.
doi:10.1371/journal.pone.0091536.g001
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starvation resulting from crowding) consistently occur from

January to May every year [59]. The relative effects of climate

and density feedback have also been quantified in groups of

sympatric species, e.g., large ungulates [60,61], ducks [62], diurnal

or nocturnal butterflies [9,11], and flatfish [63]. Moreover, latitude

has often been used as a proxy for climate, with numerous studies

reporting the predominance of immediate versus delayed density

feedback (and contrasting dynamics from damping through cycles

or chaos) along large latitudinal bands, especially in small rodents,

pest insects and game homeotherms (reviewed in [64]). All the

latter investigations reveal ample variation in the interplay

between climate and density feedbacks at the population level.

Therefore, the choice of populations used to represent a species

might lead to different results and varying patterns.

A common approach to examine cross-taxa patterns of density

feedback, population dynamics and climate is to use a common

spatial climate-data resolution for all species, as in our study. This

disregards the fact that climate processes driving population

change might operate at different spatial scales for different

populations and species. For instance, territorial birds can compete

for food resources mainly at the scale of territories [65]; the quality

of a few plant individuals can override the strength of compen-

satory density feedback at a population level in herbivorous insects

[66]; or, more intricately, the strength of those feedbacks in reef

fish can increase at small scales, or decrease at large scales, from

low to high habitat complexity [67]. Interestingly, we found that

the effect of precipitation of the wettest month on density-feedback

strength was positive for birds, and negative for mammals,

indicating that both groups might (tentatively) respond differently

to broad climatic cues. Although those effects might not be

biologically meaningful, given the low goodness of fit of our

models, this result alerts that climate effects might cancel out, and

so be opaque to modelling, if datasets pool taxa for which density

feedbacks vary in opposite direction in response to climate

gradients. For future studies over broad taxonomical groups, we

suggest the compilation of data from replicate populations for each

species, and from species whose demography is known a priori to

respond to common scales and cues of environmental variation,

such as in territorial, long-distance migratory or small oceanic-

island species – this enterprise might require collaborative effort

among many researchers sharing their data on individual

populations, or access to data from national environmental

agencies monitoring populations and species for decades [68]).

Allometric and/or phylogenetic controls are also indispensable in

cross-taxa comparisons as supported by our results. Critically,

those results were upheld by applying phylogenetic constraints

(PGLS based on fine phylogenies of birds and mammals) and

simpler linear models (GLM, and GLMM with taxonomic Order as

random factor, both with controls for body size); therefore, cross-

Figure 2. Density feedback and minimum climate variables. Model probabilities (left panels; Table 2) and standardized wAICc-averaged effect
sizes (right panels; Table 5) result from contrasting 9 models with strength of compensatory density feedback from time series of abundance
(response) and combinations of 6 explanatory variables including time-series length (q, years), temperature of the coldest month (minT, uC),
precipitation of the driest month (minP, mm), seasonality of temperature (sT = sd, uC) and seasonality of precipitation (sP = CV). Models were fitted
as phylogenetic generalized least-squares regression for two datasets comprising 91 bird and 55 mammal species, respectively.
doi:10.1371/journal.pone.0091536.g002
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taxa analyses can be feasible for those groups of species for which

robust phylogenies might be unavailable.

A fundamental limitation of our theme of investigation is that

‘temperate’ and ‘snow’ predominated relative to ‘equatorial’, ‘arid’

and ‘polar’ climates. This bias originates from the state of the art of

ecological research that concentrates on temperate climates in

wealthy countries mostly in the Northern Hemisphere [69] – a

trend particularly pronounced in the study of density feedbacks

across taxa and biomes [70]. Indeed, the length of the climate

Figure 3. Density feedback and maximum climate variables. Model probabilities (left panels; Table 3) and standardized wAICc-averaged effect
sizes (right panels; Table 6) result from contrasting 9 models with strength of compensatory density feedback from time series of abundance
(response) and combinations of 6 explanatory variables including time-series length (q, years), temperature of the hottest month (maxT, uC),
precipitation of the wettest month (maxP, mm), seasonality of temperature (sT = sd, uC) and seasonality of precipitation (sP = CV). Models were
fitted as phylogenetic generalized least-squares regression for two datasets comprising 91 bird and 55 mammal species, respectively.
doi:10.1371/journal.pone.0091536.g003

Table 4. Density feedback and mean climate variables.

Variable BIRDS MAMMALS

q –0.04 [–0.05, –0.04] –0.07 [–0.09, –0.06]

mT -0.04E-3 [-0.07E-3, -0.02E-3] -0.02E-2 [-0.04E-2, -0.01E-2]

mP 0.01 [-0.07E-1, 0.01] 0.09E-2 [-0.11E-2, 0.35E-2]

sT 0.03E-6 [0.02E-6, 0.06E-6] 0.04E-6 [0.03E-6, 0.07E-6]

sP 0.08E-2 [-0.03E-2, 0.2E-1] -0.09E-1 [-0.22E-1, -0.03E-1]

Standardized model-averaged effect sizes of time-series length (q, years), mean
annual temperature (mT, uC), mean annual precipitation (mP, mm), seasonality
of temperature (sT = sd, uC) and seasonality of precipitation (sP = CV) as
explanatory variables of variation in strength of compensatory density feedback
in birds (91 species) and mammals (55 species). Statistical models were fitted as
phylogenetic generalized least-squares regression, with a total of 9 models in
the set (Table 1, Figure 1). Effect sizes are medians (in bold) for 100
bootstrapped samples [95th bootstrapped percentile ranges].
doi:10.1371/journal.pone.0091536.t004

Table 5. Density feedback and minimum climate variables.

Variable BIRDS MAMMALS

q –0.05 [–0.05, –0.04] –0.07 [–0.09, –0.05]

minT -0.03E-3 [-0.04E-3, -0.02E-3] -0.04E-3 [-0.07E-3, -0.02E-3]

minP 0.02E-1 [0.02E-1, 0.03E-1] 0.04E-2 [-0.01E-2, 0.07E-2]

sT 0.02E-6 [0.01E-6, 0.04E-6] 0.06E-6 [0.03E-6, 0.08E-6]

sP 0.05E-2 [-0.04E-2, 0.02E-1] –0.01 [–0.02, -0.04E-1]

Standardized model-averaged effect sizes of time-series length (q, years),
temperature of the coldest month (minT, uC), precipitation of the driest month
(minP, mm), seasonality of temperature (sT = sd, uC) and seasonality of
precipitation (sP = CV) as explanatory variables of variation in strength of
compensatory density feedback in birds (91 species) and mammals (55 species).
Statistical models were fitted as phylogenetic generalized least-squares
regression, with a total of 9 models in each contrasted set (Table 2, Figure 2).
Effect sizes are medians (in bold) for 100 bootstrapped samples
[95th bootstrapped percentile ranges].
doi:10.1371/journal.pone.0091536.t005
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gradients captured by our climate variables might be too narrow to

signal spatial variation in the strength of density feedback; in

particular, the paucity of demographic data from tropical

populations certainly truncates the full spectrum of variation for

both temperature and precipitation variables and reduces the

power for testing our hypothesis relative to other macroecological

studies (e.g., [71]). At present, this caveat could be partly

superseded by combing the literature for long-term population

data from poorly studied climates and biomes. Much of this

information might be available in grey literature or environmental

reports, or awaits collection in future research.

In the last two decades, new developments in mathematical

demography have shifted the focus from testing for (the presence of)

to explaining variation in density feedback [3]. We have cited above a

sample of a large body of recently published studies aiming to

elucidate the relative demographic role of exogenous and

endogenous mechanisms. Meta-analytical techniques hold a

promising future application here (e.g., [72]), but care must be

taken to ensure parameter estimates and hypotheses are compa-

rable across species, statistical models and studies. For instance,

the estimation of additive effects of autoregressive parameters of

climate/weather and lagged population size is often used to

explain or predict temporal change in a range of different

responses, such as process error [13], population size [38] or

population growth rate [73]. For example, Post [61] used time

series of the North Atlantic Oscillation (NAO) and times series of

abundance of 27 populations of caribou/reindeer (Rangifer tarandus)

in Greenland, Finland and Russia in an autoregressive model

(response = Nt, explanatory variables = density feedback and

climate). He estimated effect sizes of density feedback and NAO,

and subsequently correlated those effect sizes (now functioning as

responses) with latitude and longitude (new explanatory variables)

– see also our description of Knape and de Valpine’s [13] response

and explanatory variables above. In contrast, in our study and that

of Wang et al. [19], time series of abundance of birds and

mammals have been used to estimate the strength of compensa-

tory density feedback (response = r, explanatory variable = Nt),

and subsequently, we correlated feedback strength (new response)

with single, average climate variables. In doing so, our study

examined how the intensity of trophic/social interactions (as

inferred from density feedback) across species can vary with long-

term average external forcing. Thus, the selection of different

responses and potential explanatory variables, and of different

model sets and modelling approaches, potentially addresses the

interplay between climate and density feedbacks from different

angles, but comes at the expense of ease of comparability.

Further Directions

Mechanistic understanding lags behind mathematical develop-

ment and model fitting in ecology and such a mismatch has

handicapped the identification of ‘general principles’ in population

dynamics [74]. Among those developments, time-series analyses

have become an important tool in macroecological research

[2,3,75], and shed light on important fundamental themes such as

the relationship between demography and life history [76],

evolution [77] or extinction [78], often using datasets spanning

invertebrates, vertebrates and plants from aquatic and terrestrial

realms. Yet, the disparity of the spatial scales, at which

environmental forcing might affect the population dynamics of

species with contrasting life-history traits (e.g., body size, fertility,

longevity, age at first reproduction), mobility and habitat

dependencies, suggests that the study of the interplay of density-

independent and -dependent factors through time-series analysis

might only be biologically meaningful (and result in some general

cross-taxa patterns) among closely related species, whereby long-

term data include several population per species to account for

intraspecific variation. We strongly argue that our ability to

discern global patterns of population dynamics is currently limited

because parameters, models and modelling approaches (hence

underlying hypotheses) are not directly comparable across studies.

Furthermore, long-term studies based on census data and

summary statistics of reproductive fitness (like r) are largely

opaque in identifying the actual mechanisms causing demographic

feedbacks [79]; for that, experimentation is likely to be more

appropriate [80]. Indeed, the conceptual rationale of our study

stems from Nicholson’s iconic experiments on blowflies (Lucilia

cuprina), where he hypothesized that intraspecific competition

drove oscillations in numbers of larvae and adults exposed to

different amounts of food resources [81,82]. Surprisingly, this kind

of experimentation has received little attention thereafter, and the

results from already published experiments still await meta-

analytical enquiry (e.g., [83–86]). Along with a more unified

theoretical framework, whereby hypotheses (rather than statistics)

drive research progress [74] and researchers communicate more

effectively [87], the connection between long-term/large-scale and

short-term/small-scale studies, presently confined to focal taxa and

specialities (e.g., [72,88–90]), seems crucial to improve our

mechanistic understanding of population dynamics.

Supporting Information

File S1 Supporting information file including Texts S1,
S2, Tables S1-S12, and Figures S1-S8. Text S1, Criteria
for high-quality data subsets. Text S2, Dataset proper-
ties, modelling approach and results for GLM/GLMM
analyses. Table S1, Frequency of Köppen-Geiger climate
types captured by the full dataset and the high-quality
subsets. Table S2, Density feedback and mean climate
variables for high-quality data subsets. Akaike’s informa-

tion criterion (support for the model set correlating temperature

and precipitation variables to strength of compensatory density

feedback for birds and mammals. All models were fitted through

phylogenetic generalized least-squares regression, and model-

ranking descriptors are medians from 100 bootstrapped samples.

Table S3, Density feedback and mean climate variables
for high-quality data subsets. Standardized model-averaged

effect sizes of time-series length, mean annual temperature, mean

Table 6. Density feedback and maximum climate variables.

Variable BIRDS MAMMALS

q –0.04 [–0.05, –0.04] –0.06 [–0.08, –0.05]

maxT -0.02E-3 [-0.05E-3, -0.03E-4] -1.6E-2 [-0.04E-2, -0.06E-3]

maxP 0.03 [0.02, 0.06] -0.05 [-0.09, -0.02]

sT 0.06E-6 [0.03E-6, 0.01E-5] 0.07E-6 [0.03E-6, 0.01E-5]

sP 0.07E-2 [-0.01E-2, 0.02E-1] –0.01 [–0.02, -0.03E-1]

Standardized model-averaged effect sizes of time-series length (q, years),
temperature of the hottest month (maxT, uC), precipitation of the wettest
month (maxP, mm), seasonality of temperature (sT = sd, uC) and seasonality of
precipitation (sP = CV) as explanatory variables of variation in strength of
compensatory density feedback in birds (91 species) and mammals (55 species).
Statistical models were fitted as phylogenetic generalized least-squares
regression, with a total of 9 models in each contrasted set (Table 3, Figure 3).
Effect sizes are medians (in bold) for 100 bootstrapped samples
[95th bootstrapped percentile ranges].
doi:10.1371/journal.pone.0091536.t006
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annual precipitation, seasonality of temperature and seasonality of

precipitation as explanatory variables of variation in strength of

compensatory density feedback in birds or mammals. Statistical

models were fitted as phylogenetic generalized least-squares

regression, with a total of nine models in each contrasted set.

Effect sizes are medians for 100 bootstrapped samples. Table S4,
Density feedback and minimum climate variables for
high-quality data subsets. Akaike’s information criterion

support for the model set correlating temperature and precipita-

tion variables to strength of compensatory density feedback for

birds and mammals. All models were fitted using phylogenetic

generalized least-squares regression, and model-ranking descrip-

tors are medians from 100 bootstrapped samples. Table S5,
Density feedback and minimum climate variables for
high-quality data subsets. Standardized model-averaged

effect sizes of time-series length, temperature of the coldest month,

precipitation of the driest month, seasonality of temperature and

seasonality of precipitation as explanatory variables of variation in

strength of compensatory density feedback in birds or mammals.

Statistical models were fitted as phylogenetic generalized least-

squares regression, with a total of nine models in each contrasted

set. Effect sizes are medians for 100 bootstrapped samples. Table
S6, Density feedback and maximum climate variables
for high-quality data subsets. Akaike’s information criterion

support for the model set correlating temperature and precipita-

tion variables1 to strength of compensatory density feedback for

birds and mammals. All models were fitted using phylogenetic

generalized least-squares regression, and model-ranking descrip-

tors are medians from 100 bootstrapped samples. Table S7,
Density feedback and maximum climate variables for
high-quality data subsets. Standardized model-averaged

effect sizes of time-series length, mean temperature of the hottest

month, mean precipitation of the wettest month, seasonality of

temperature and seasonality of precipitation as explanatory

variables of variation in strength of compensatory density feedback

in birds or mammals. Statistical models were fitted as phylogenetic

generalized least-squares regressions, with a total of nine models in

each contrasted set. Effect sizes are medians for 100 bootstrapped

samples. Table S8, Model set used for GLMM and GLM
analyses. All models include the same response, i.e., strength of

compensatory density feedback across taxa (fitted by GLMM and

OR = taxonomic order as random factor), and bird and mammal

species (fitted by GLM, no phylogenetic random effect). Control

variables were included in all models, namely q = length of time

series, and body = body size. Climate variables encompassed: mT

= annual temperature, mP = annual precipitation, sT =

seasonality of temperature, and sP = seasonality of precipitation.

Table S9, Density feedback, mean climate variables and
model contrasts using linear models. Akaike’s information

criterion support for the first- and second-ranked models

correlating temperature and precipitation variables to strength of

compensatory density feedback for all taxa, and only mammals or

birds. All models were fitted under a generalized linear mixed-

effects framework for all taxa and included three control variables,

namely time-series length, body size and the taxonomic level of

order as random factor. We used generalized linear models (i.e.,

without a random factor) for the data subsets of birds and

mammals separately. Model-ranking descriptors are medians from

100 bootstrapped samples. Table S10, Density feedback,
mean climate variables and model contrasts using
linear models. Standardized model-averaged effect sizes of

time-series length, body size, mean annual temperature, mean

annual precipitation, seasonality of temperature and seasonality of

precipitation as explanatory variables of variation in strength of

compensatory density feedback, for all taxa, and only mammals or

birds. Statistical models were fitted as generalized linear mixed

effects (all taxa) or generalized linear models (birds or mammals,

separately), with a total of 9 models in each contrasted set. Effect

sizes are medians for 100 bootstrapped samples. Table S11,
Density feedback, mean climate variables and model
contrasts using linear models for the high-quality data
subsets. Akaike’s information criterion support for the first- and

second-ranked models correlating temperature and precipitation

variables to strength of compensatory density feedback for all taxa,

and only mammals or birds. All models were fitted under a

generalized linear mixed effects framework for all taxa and

included three control variables, namely time-series length, body

size and the taxonomic level of order as random factor. We used

generalized linear models (i.e., without a random factor) for the

data subsets of birds and mammals separately. Model-ranking

descriptors are medians from 100 bootstrapped samples. Table
S12, Density feedback, mean climate variables and
model contrasts using linear models for the high-quality
data subsets. Standardized model-averaged effect sizes of time-

series length, body size, mean annual temperature, mean annual

precipitation, seasonality of temperature and seasonality of

precipitation as explanatory variables of variation in strength of

compensatory density feedback, for all taxa, and only mammals or

birds. Statistical models were fitted as generalized linear mixed

effects (all taxa) or generalized linear models (birds or mammals,

separately), with a total of nine models in each contrasted set.

Effect sizes are medians for 100 bootstrapped samples. Figure S1,
Map of localities. Position of the 97 study localities (28

countries) over 146 species of birds and mammals covered in the

phylogenetic generalized least-squares regression for all species,

and the high-quality subset including 76 birds and 44 mammals

from 94 localities and 26 countries. Figure S2, Bivariate
correlations among climate variables, latitude and
longitude. Spearman correlations and bivariate plots among

latitude, longitude and the climate variables, namely average

temperature, temperature seasonality, minimum temperature in

the coldest month, maximum temperature in hottest month,

average precipitation, precipitation seasonality, minimum precip-

itation in driest month, and maximum precipitation in the wettest

month. Taxa comprise 91 bird and 55 mammal species from 97

localities covered in the phylogenetic generalized least-squares

regressions. Latitude and longitude are absolute values so

representing positions from the equator to the poles in both

hemispheres. Figure S3, Density feedback and mean
climate variables for high-quality data subsets. Model

probabilities and standardized wAICc-averaged effect sizes after

contrasting 9 models with strength of compensatory density

feedback from time series of abundance and combinations of six

explanatory variables including time-series length, mean annual

temperature, mean annual precipitation, seasonality of tempera-

ture and seasonality of precipitation. Models were fitted as

phylogenetic generalized least-squares regressions for two datasets

comprising 77 bird and 45 mammal species, respectively. Figure
S4, Density feedback and minimum climate variables
for high-quality data subsets. Model probabilities and

standardized wAICc-averaged effect sizes after contrasting nine

models with strength of compensatory density feedback from time

series of abundance and combinations of six explanatory variables

including time-series length, temperature of the coldest month,

precipitation of the driest month, seasonality of temperature and

seasonality of precipitation. Models were fitted as phylogenetic

generalized least-squares regressionsfor two datasets comprising 76

bird and 44 mammal species, respectively. Figure S5, Density
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feedback and maximum climate variables for high-
quality data subsets. Model probabilities and standardized

wAICc-averaged effect sizes after contrasting nine models with

strength of compensatory density feedback from time series of

abundance and combinations of 6 explanatory variables including

time-series length, temperature of the hottest month, precipitation

of the wettest month, seasonality of temperature and seasonality of

precipitation. Models were fitted as phylogenetic generalized least-

squares regressions for two datasets comprising 91 bird and 55

mammal species, respectively. Figure S6, Density feedback,
mean climate variables and model contrasts using
linear models. Model probabilities and standardized AICc-

averaged effect sizes after contrasting 9 models with strength of

compensatory density feedback from time series of abundance and

combinations of 6 explanatory variables including time-series

length, body size, mean annual temperature, mean annual

precipitation, seasonality of temperature and seasonality of

precipitation. Statistical models were fitted as generalized linear

mixed-effects models (random effect = Linnean taxonomical order)

for all taxa and as generalized linear models for the subsets of birds

and mammals. Figure S7, Density feedback, mean climate

variables and model contrasts using linear models for
the high-quality data subsets. Model probabilities and

standardized AICc-averaged effect sizes after contrasting 9 models

with strength of compensatory density feedback from time series of

abundance and combinations of 6 explanatory variables including

time-series length, body size, mean annual temperature, mean

annual precipitation, seasonality of temperature and seasonality of

precipitation. Statistical models were fitted as generalized linear-

mixed effects models (random effect = Linnaean taxonomical

order) for all taxa and as generalized linear models for the subsets of

birds and mammals.
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File S2 Supporting Dataset.
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