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ABSTRACT

Aim Determining how ecological processes vary across space is a major focus in
ecology. Current methods that investigate such effects remain constrained by
important limiting assumptions. Here we provide an extension to geographically
weighted regression in which local regression and spatial weighting are used in
combination. This method can be used to investigate non-stationarity and spatial-
scale effects using any regression technique that can accommodate uneven weight-
ing of observations, including machine learning.

Innovation We extend the use of spatial weights to generalized linear models and
boosted regression trees by using simulated data for which the results are known,
and compare these local approaches with existing alternatives such as geographi-
cally weighted regression (GWR). The spatial weighting procedure (1) explained up
to 80% deviance in simulated species richness, (2) optimized the normal distribu-
tion of model residuals when applied to generalized linear models versus GWR, and
(3) detected nonlinear relationships and interactions between response variables
and their predictors when applied to boosted regression trees. Predictor ranking
changed with spatial scale, highlighting the scales at which different species–
environment relationships need to be considered.

Main conclusions GWR is useful for investigating spatially varying species–
environment relationships. However, the use of local weights implemented in alter-
native modelling techniques can help detect nonlinear relationships and high-order
interactions that were previously unassessed. Therefore, this method not only
informs us how location and scale influence our perception of patterns and pro-
cesses, it also offers a way to deal with different ecological interpretations that can
emerge as different areas of spatial influence are considered during model fitting.
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INTRODUCTION

Truly spatially invariant phenomena are rare in nature (e.g.

Bersier et al., 1999). In contrast, spatially dependent patterns

and processes are common and illustrated by many examples,

including the slope of species–area curves (Lyons & Willig,

2002), the shapes of species richness and altitude relationships

(linear or hump-shaped; Rahbek & Graves, 2001) and the loca-

tion of biodiversity hotspots (Hurlbert & Jetz, 2007). Ecological

processes can vary either as a function of the location (non-

stationarity; Brunsdon et al., 1998) or of the spatial scale con-

sidered. In this regard, scale dependency of ecological patterns is

expected to be both general (Lyons & Willig, 2002) and modified

by species-specific traits such as body size and/or dispersal

capacity (Rahbek, 2005).

The importance of spatial scale in ecology can be understood

by considering each of its components: (1) grain size, the size of

the elementary sampling unit such as transect length or quadrat

area; (2) sampling interval, the average distance between neigh-

bouring sampling units; and (3) spatial extent, the total area
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under study (Wiens, 1989; Allen & Hoekstra, 1991). Observed

variation in an ecological phenomenon over space can depend

on the values adopted for each of these three components as well

as on the location within the study region, and can therefore

affect how well any covariate, from fine- to broad-scale, will

explain this variation over space. One might expect a priori that

variation in species richness across a fine-grain and small-extent

sampling regime might be predicted well by a fine-scale physical

variable, such as substratum structure (Pittman et al., 2004). At

the other extreme, species richness at broader spatial scales (e.g.

regional or global) is likely to be captured better by broader-

scale variables, such as temperature gradients, or possibly spatial

predictors such as latitude and longitude (e.g. Caley & Schluter,

1997; Mellin et al., 2010). Sampling and pattern scales are thus

ineluctably intertwined (Hutchinson, 1953; Levin, 1992), and

sampling at a scale that matches physical and biological patterns

is necessary to capture the underlying mechanisms that shape

communities and build better distribution models, irrespective

of whether they are used for description or prediction.

Geographically weighted regression (GWR) is a useful and

widely adopted method for exploring the degree to which

species–environment relationships vary according to location

and at different spatial scales (Brunsdon et al., 1998;

Fotheringham et al., 2002). GWR is a local regression technique

whereby an ordinary least-squares regression is fitted around a

focal point (i.e. the ‘regression point’ defined by Fotheringham

et al. 2002), with data closer to the focal point weighted more

heavily in the local regression than data farther away. The weight

assigned to each datum decreases as the distance to the focal

point increases. Whereas the outputs of GWR are mostly insen-

sitive to the weighting function used, they are sensitive to the

bandwidth of the chosen weighting function, thus determining

the effective area of influence around the focal point considered

during model calibration (Fotheringham et al., 2002) (see

Fig. S1 in Supporting Information for an example of a fixed

Gaussian spatial kernel). This process is repeated with all data in

turn being considered as the focal point. A unique weighting

scheme, defined within the neighbourhood of the focal point,

results in a unique solution for each local regression.

Local regression techniques such as GWR that use spatial

weighting are useful for providing a first assessment of non-

stationarity and the effects of spatial scale in ecological data (Da

Silva Cassemiro et al., 2007; Hawkins, 2012). By modifying the

bandwidth used in GWR, i.e. the extent to which distant loca-

tions contribute to the model, one can assess whether species–

environment relationships are contingent on the area of spatial

influence considered during model fitting. Another possible,

although somewhat less explored, option is to use GWR to

explore how model support varies across spatial scales as the

area of spatial influence is altered. However, because it is based

on ordinary least squares, GWR as usually defined and imple-

mented remains constrained by limiting assumptions such as its

inability to include qualitative factors, account for nonlinear

relationships (Austin, 2007) or handle non-Gaussian error dis-

tributions (but see example extensions to Poisson and binomial

distributions in Fotheringham et al., 2002, and GWR logistic

regression models in Osborne et al., 2007). Moreover, the issue

of multicollinearity among GWR coefficients associated with

different predictors (Wheeler & Tiefelsdorf, 2005) remains

unresolved. A possible way to overcome these limitations would

be to implement the concept underpinning GWR in more flex-

ible modelling techniques, such as those based on machine

learning (Table 1).

Here we present a generalized method for investigating how

species–environment relationships vary as the effective area of

spatial influence is altered, by generalizing the concepts of local

regression and spatial weighting to virtually any modelling tech-

nique that can accommodate differential weights among obser-

vations, including machine learning methods. This method can

be applied to species distribution models (or niche models) as

Table 1 Comparison of geographically weighted regression (GWR) (Brunsdon et al., 1998; Fotheringham et al., 2002) and the spatially
weighted models developed in this study.

Criterion and subcriterion GWR Spatially weighted models (this study)

Method formulation

Type of predictors Quantitative Quantitative, qualitative, interactions

Error distributions Gaussian (binomial, Poisson) Gaussian, binomial, Poisson, gamma, quasi, negative binomial

Risk function IWLS IWLS, maximum-likelihood estimation

Spatial weighting Fixed Gaussian, fixed bi-square, adaptive Fixed Gaussian (other methods can be implemented)

Ease of implementation

Software GWR 4.0, R {spgwr} R {stats; gbm}

Running time (simulated data) 260 minutes 70 minutes

Type of outputs Estimated local statistics, model result summary Flexible (includes these and other user- defined options)

Possible inferences

Spatial stationarity ✓ ✓

Model predictions ✓ ✓

Nonlinear relationships ✗ ✓

Random effects ✗ ✓ (Only with generalized linear mixed-effect models)

IWLS, iteratively reweighted least squares.

Geographical weights in biodiversity models
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well as macroecological models of, for example, species richness

or total abundance (Terribile et al., 2009; Guisan & Rahbek,

2011). We thus jointly refer to both types of model as ‘biodiver-

sity modelling’ techniques. While observation weighting is

broadly applicable across all biodiversity modelling techniques,

here we illustrate its application to two of the most commonly

used and powerful species distribution modelling techniques,

namely generalized linear models (GLMs) and boosted regres-

sion trees (BRTs). Of all the statistical techniques used to model

biodiversity, these are some of the most popular and easy to

implement (Li & Wang, 2013), making them good candidates

for illustrating the generalization of the use of spatial weights in

this context. Using a simulated dataset, we show (1) how imple-

menting this spatial weighting method in a classic least-squares

(linear) model framework successfully reproduces GWR results

and (2) how, by implementing it in more flexible frameworks,

greater information can be recovered about ecological complex-

ity such as scale-dependent interactions among environmental

covariates or nonlinear species–environment relationships.

METHODS

Overview of the method, its development
and application

We developed a spatially explicit weighting procedure to simu-

late a varying area of influence around a focal observation. We

defined the focal datum as the observation assigned the greatest

weight, using each datum in the full dataset successively as the

focal observation. We used a fixed Gaussian density function to

downweight progressively the influence of observations the

greater their distance from the focal observation, with the rate of

decay defined by the bandwidth (b) of the Gaussian function,

and within models fitted using all observations (Fig. S1). For any

given focal observation, increasing b simulates flattening of the

surface of influence around this point by evening the weights

across the grid. In this way, the effective area of influence or size

of the observation window centred on this point varies; on a

completely flat surface all points contribute equally to model

fitting, whereas on a highly peaked surface only closely neigh-

bouring points will exert much influence.

The procedure involves a separate local regression for each

focal observation, fitted using all (weighted) data, the (fixed)

weighting scheme being defined individually for each band-

width (Appendix S1, Fig. S2). Model performance indices are

then aggregated across local regressions at each scale and the

importance of different predictors is compared among scales.

We first develop the method within a least-squares framework

using simulated data, for which the scale-specific influence of

each predictor is known, and compare the outcomes of the

resulting spatially weighted linear models (LMs) with those of a

GWR. We then extend the use of spatial weights to other types of

regression, namely GLMs and BRTs as examples, and provide

the R code to apply the approach to any type of regression that

can accommodate uneven observation weighting.

Simulated dataset

We simulated a spatially explicit dataset consisting of three pre-

dictors including seabed slope (Slope), benthic irradiance (Irra-

diance) and sea surface temperature (Temperature) that

respectively captured local, subregional and regional variation

of a single biological response variable, species richness (S). To

achieve this, we first modelled S as a function of Slope, Irradi-

ance and Temperature for a set of observations (n = 163) and

used the resulting model to predict species richness across the

study area, thereby defining our simulated dataset across a

regular grid based on known influences of all predictors.

The scale of spatial variation for each predictor was captured

by the correlogram of Moran’s I autocorrelation coefficient as a

function of increasing distance between observations, exceeding

the 0.05 threshold up to a distance of 0.06° latitude for Slope, to

0.09° latitude for Irradiance and 0.13° latitude for Temperature

(Fig. 1). These patterns indicate that Slope varies over fine

spatial scales, Irradiance over intermediate spatial scales and

Temperature over broad spatial scales. We derived all variables

across the same 0.5° × 0.5° grid (n = 2500 observations at a 0.01°

resolution) from observed data across the Torres Strait, Aus-

tralia, and scaled these values between 0 and 1 to standardize

comparisons between them. The Torres Strait (Fig. S3) covers

approximately 60,000 km2 between Papua New Guinea and Aus-

tralia, and comprises a total of 1295 individual reefs (Haywood

et al., 2007).

We then predicted species richness (S) for each cell across the

same grid as a function of Slope, Irradiance and Temperature in

addition to a Gaussian random error. To do this, we first

obtained S, the observed total number of species sampled per

site, from epibenthic sled samples collected at 163 locations over

the study area (see Pitcher et al. (2007) for a detailed descrip-

tion) and that sampled 15 sessile phyla, mostly represented by

Porifera, Cnidaria and Chlorophyta (67% of the total biomass).

We then compared linear, quadratic and cubic relationships

between observed S and each predictor (Slope, Irradiance and

Temperature) at the sampled locations, and combined the top-

ranked GLM based on Akaike’s information criterion corrected

for small sample sizes (AICc) (Burnham & Anderson, 2002,

2004) into a model set including the null model, paired combi-

nations and the sum of all predictors (full model). We derived

the model-averaged predictions of species richness (based on

AICc weights, wAICc), added a random error ε ∼ N [0, 5] and

used this to predict for every grid cell over the study area,

thereby defining continuous S over the same grid (n = 2500),

with known influences of all predictors.

Applying spatial weighting to simulated data

We applied local models to the simulated dataset to assess the

potential non-stationarity in species–environment relationships

resulting from a combination of (1) the inherent uncertainty

(standard deviation) in model-averaged predictions and (2) the

random error purposely embedded in the predictions. We con-

structed a spatially weighted LM and GLM with S (predicted

C. Mellin et al.
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species richness) as the response variable and a combination of

Slope, Irradiance and Temperature as predictors based on the

spatial weighting procedure described above (Appendix S1; see

also R codes in Appendix S2). Given the extent of the study area

(0.5° × 0.5°) and the linear unit used (degrees) in this case, we

used the bandwidths b ∈ {0.05; 0.1; 0.15; . . . ; 0.5°}. A seven-

model set consisted of one model for each predictor Slope,

Irradiance and Temperature (linear terms only), pairwise com-

binations of predictors, the full model and the null model. For

the spatially weighted GLM, we assumed a Poisson distribution

with a log-link (as commonly expected for count data) and

checked the normal distribution of model residuals using the

normal scores of standardized residual deviance (Breslow,

1996). Model performance indices included AICc to provide an

index of Kullback–Leibler (K-L) information loss that we used

to assign relative strengths of evidence to the different compet-

ing models, and the percent deviance (De) in S explained by the

model, which provided an index of the model’s goodness-of-fit.

We used the ‘weights’ option of the lm and glm function in the

package stats in R (R Development Core Team, 2013) for the

spatially weighted LM and GLM, respectively, to take into

account different weights for different observations in the

models.

We compared results of the spatially weighted LM and GLM

with those given by GWR for each model in the set using the

same spatial weighting scheme (i.e. fixed Gaussian) and the

same bandwidth range. The spatially weighted LM and GWR are

equivalent in terms of model formulation, the main difference

being the software package used to run them; however, we main-

tain this terminology for the purpose of determining whether or

not using differential weights in the lm function results in

similar estimates as based on the GWR package. Both in the

spatially weighted GLM and the GWR, we log-transformed and

assumed a Poisson distribution for the response variable S. Fol-

lowing Fotheringham et al. (2002), we defined the ‘best’ band-

width as the bandwidth that minimized AICc. For the best
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Figure 1 (A) Predictors of the
simulated dataset, with seabed slope
(Slope) varying at a local scale, benthic
irradiance (Irradiance) varying at a
subregional scale and sea surface
temperature (Temperature) varying at a
regional scale across this particular
section of the Torres Strait, Australia. All
predictors were scaled between 0 (light)
and 1 (dark). (B) Correlogram (Moran’s
I autocorrelation coefficient) depicted as
a function of increasing distance (in
degrees of latitude) classes. (C)
Relationships between each predictor
and species richness.
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bandwidth, and for each technique, we computed and compared

local parameter estimates and the distribution of model resid-

uals using the normal scores of standardized residual deviance

(Q–Q plots). We also ran the same analysis with even weighting

and we compared the results of the ‘global’ GWR with those of

the classic (unweighted) LM and GLM. We ran GWR using the

software package GWR 4.0 (Nakaya et al., 2005) with options

(other than described above) set to the default values.

We explored the extent to which a spatially weighted BRT

could provide an improvement over GWR and the two linear

model variants by detecting nonlinear relationships between the

response variable and the predictors, or interactions among pre-

dictors. We first ran the spatially weighted BRT using the same

bandwidth range as defined above using the ‘site.weights’ option

of the gbm.fixed function in brt.functions.R provided by Elith

et al. (2008) (R package {gbm}), and assessed the percentage

contribution of each predictor Slope, Irradiance and Tempera-

ture at each bandwidth. For the best bandwidth, we pooled

results across local BRT and derived the mean and confidence

interval of the marginal effect of each predictor and their inter-

actions at that particular bandwidth, the percentage contribu-

tion of each predictor in explaining variance in S and their

interactions (Elith et al., 2008). BRTs can be computationally

intensive, so we fixed the number of trees at 1000 to ensure a

reasonable processing time. We limited the tree complexity to

three to avoid overfitting and used a learning rate of 0.001. The

optimal number of trees was defined using cross-validation

(Elith et al., 2008).

We tested for edge effects on model performance indices that

could result from truncated weight distributions as focal obser-

vations approached the edge of a grid (Appendix S1). Finally, we

constructed a simulation to examine how the degree of spatial

clustering influenced the performance of the method and its

results (Appendix S1) using spatially weighted GLMs.

RESULTS

Construction and spatial scale analysis of the
simulated dataset

Species richness (S) (40.0 ± 8.5 species, mean ± standard devia-

tion) was best explained by a combination of all three variables,

with quadratic and cubic terms for Slope and Irradiance, and

only quadratic for Temperature (Table 2), confirming the strong

curvilinear relationships observed between S and each predictor

(Fig. 1). The full model explained 15.7% of the deviance in S

and received the highest support based on wAICc (c. 1), and

therefore contributed most to model-averaged predictions of S.

When we applied a spatially even weighting scheme in models

predicting S, global GWR provided the same results as the cor-

responding LM in terms of deviance, De, AICc and wAICc

(results not shown) and similar results to those given by the

corresponding GLM in terms of De-, wAICc- and AICc-based

model ranking (Table 3), although raw deviance and AICc dif-

fered between techniques.

Analysis of the simulated dataset using spatially
weighted LM and GLM

We obtained comparable patterns in De and AICc for GWR and

the spatially explicit linear models as bandwidth (b) increased

(Fig. 2). In both cases, and for all models, AICc was smallest at

the smallest bandwidth (b = 0.05) and gave the same model

ranking across increasing bandwidths, although raw AICc dif-

fered. The full model received the strongest support at all band-

widths, whereas the deviance explained by the

Slope + Irradiance model decreased with increasing bandwidth,

and that explained by the Irradiance + Temperature model

increased. We obtained contrasting results for the spatially

explicit GLM; while AICc remained minimal at the smallest

bandwidth, the deviance explained by the full model decreased

with increasing bandwidth. According to De, the scale-specific

spatial pattern in each individual predictor and its influence on

S was more appropriately captured by this model than the pre-

vious one: the deviance explained by Slope rapidly decreased,

that of Irradiance decreased but at larger bandwidths, whereas

that of Temperature increased with increasing bandwidth.

However, this pattern was less readily detected based on AICc.

For the best bandwidth (b = 0.05), the examination of the

normal scores of standardized residual deviance revealed that

the residuals of GWR and the spatially weighted LM were

strongly skewed towards high values, whereas those of the spa-

tially weighted GLM were closer to a normal distribution

(Fig. 2). Local estimates of model parameters were similar for all

three modelling techniques, apart from minor (both positive

Table 2 Summary of generalized linear models (GLM) used to
generate the simulated dataset and predict species richness (S) as
a function of spatial predictors at local (seabed slope; Slope),
subregional (benthic irradiance; Irr) and regional (sea surface
temperature; Temp) scales. We considered both second- or
third-degree polynomial functions (Poly) of each predictor. We
ranked models based on Akaike’s information criterion corrected
for small sample sizes (AICc).

Model k LL wAICc De

S ∼ Poly(Slope3) + Poly(Irr3) +
Poly(Temp2)*

9 −1391.1 1.000 15.7

S ∼ Poly(Slope3) + Poly(Irr3) 7 −1409.6 < 0.001 14.1

S ∼ Poly(Irr3) + Poly(Temp2) 6 −1429.8 < 0.001 12.3

S ∼ Poly(Irr3) 4 −1452.7 < 0.001 10.3

S ∼ Poly(Slope3) + Poly(Temp2) 6 −1490.9 < 0.001 6.9

S ∼ Poly(Slope3) 4 −1506.1 < 0.001 5.6

S ∼ Poly(Temp2) 3 −1545.0 < 0.001 2.2

S ∼ 1 1 −1570.3 < 0.001 –

k, number of parameters; wAICc, AICc weight; LL, maximum log-
likelihood; De, percentage deviance explained (a measure of the struc-
tural goodness of fit of the model). Model sequences are ordered by
increasing wAICc.
*Model formula (including model coefficients) is: S ∼ 2.95 +
0.13 × Slope – 3.27 × Slope2 + 4.10 × Slope3 + 2.99 × Irr – 4.53 × Irr2 +
2.08 × Irr3 + 1.24 × Temp – 0.69 × Temp2.

C. Mellin et al.
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and negative) differences (Fig. 3). Although parameter estimates

were multicollinear for all three techniques, absolute values for

the Spearman’s correlation coefficients were lower for the spa-

tially weighted LM and GLM than for GWR in most cases

(Table S1).

Analysis of the simulated dataset using a spatially
weighted BRT

The use of a spatially weighted BRT resulted in the same pattern

of change in predictor ranking with increasing spatial scale, as

with a spatially weighted GLM, even though the scales at which

transitions occurred in the contribution of each model differed

slightly, and Irradiance only outperformed Temperature for

b ≈ 0.2 (Fig. 4). However, using a spatially weighted BRT allowed

us to detect nonlinear relationships between S and Slope (42%

contribution to the total deviance explained; Fig. 4), and to a

lesser extent, between S and Irradiance (34% contribution).

Although we detected some interactions among individual pre-

dictors, in all cases they contributed < 2% of the total deviance

explained. We found no evidence for edge effects or for effects of

the degree of spatial clustering on the performance and results

of the method (Appendix S1).

DISCUSSION

Recognizing the importance of non-stationary and scale-

dependent ecological processes and building on the local

regression concept of the geographically weighted regression,

our generalized spatial weighting procedure is simple and

broadly applicable to most biodiversity modelling techniques

(see scripts adaptable to other techniques in Appendix S2).

Based on a simulated dataset with curvilinear relationships

between the response and the predictors – as is often the case

with ecological data (Austin, 2007) – this method was able to

account for such ecological complexities while providing an

assessment of spatial non-stationarity and scale effects. In par-

ticular, spatially weighted BRTs detected scale-specific nonlin-

ear relationships between the predictors and the response and

potential interactions among predictors, even though these

effects were weak in the simulated dataset. Given these findings,

we suggest that: (1) GWR is an efficient and straightforward

local regression technique for assessing spatial non-stationarity

and scale effects as long as residuals are normally distributed;

(2) alternatively, or if other error distributions are expected,

spatially weighted GLMs can be more useful; and (3) if scale-

dependent nonlinear relationships or high-order interactions

are expected, spatially weighted BRTs should be the preferred

option. In a hypothesis-testing framework, however, GLMs are

often more appropriate than BRTs; this might also apply to

spatially weighted GLMs compared with spatially weighted

BRTs. Using the most appropriate method for the data available

and the question being asked should help circumvent compet-

ing ecological interpretations of variable support that can

emerge as the region under study and/or area of influence is

altered.

Results of spatially weighted GLMs differed from those given

by GWR, probably due to the use of different fitting algorithms:

maximum likelihood estimation in GLMs (McCullagh &

Nelder, 1989) and the iteratively reweighted least-squares algo-

rithms in GWR (Fotheringham et al., 2002). In this case, results

of spatially weighted GLMs appear more relevant, with the top-

ranked models based on AICc also explaining the most deviance

in the response, and a distribution of residuals closer to normal-

ity, although the ‘best’ model based on AICc was less discernible

than for the GWR. Different model performance indices have

different properties and limitations; for example, AICc can be

affected by spatial autocorrelation (Diniz-Filho et al., 2008), so

we recommend considering multiple indices while selecting the

most appropriate modelling technique. A more surprising

result, given that spatially weighted LMs and GWR are based on

the same algorithm, was the difference between outputs from

these two techniques, which is likely to be a consequence of

using difference statistical programs. Furthermore, in the calcu-

lation of AICc, GWR uses the effective number of parameters –

a function of the trace of the hat matrix (Fotheringham et al.,

2002) – which might explain the difference in absolute AICc

between spatially weighted LMs and GWR. Finally, despite

multicollinearity among parameters for all the spatially

weighted LMs, GLMs and GWR we examined here, the absolute

Table 3 Comparison of unweighted (i.e. global) geographically
weighted regressions (GWR) and generalized linear models
(GLMs) used to predict species richness (S) as a function of
spatial predictors at local (seabed slope; Slope), subregional
(benthic irradiance; Irr) and regional (sea surface temperature;
Temp) scales using the simulated dataset. We ranked models
based on Akaike’s information criterion corrected for small
sample sizes (AICc).

Model k Deviance De AICc wAICc

GWR

S ∼ Slope + Irr + Temp 4 2183.3 57.8 2191.3 1

S ∼ Irr + Temp 3 2861.5 44.7 2867.6 < 0.001

S ∼ Slope + Irr 3 3325.8 35.7 3331.9 < 0.001

S ∼ Temp 2 3853.2 25.5 3857.2 < 0.001

S ∼ Slope 2 3969.1 23.3 3973.1 < 0.001

S ∼ Irr 2 4525.6 12.5 4529.6 < 0.001

S ∼ 1 1 5172.5 0.0 5174.5 –

GLMs

S ∼ Slope + Irr + Temp 4 2141.4 57.9 15615.6 1

S ∼ Irr + Temp 3 2813.7 44.7 16285.8 < 0.001

S ∼ Slope + Irr 3 3270.3 35.8 16742.5 < 0.001

S ∼ Temp 2 3799.0 25.4 17269.2 < 0.001

S ∼ Slope 2 3906.8 23.3 17376.9 < 0.001

S ∼ Irr 2 4456.3 12.5 17926.5 < 0.001

S ∼ 1 1 5092.5 0.00 18560.7 –

k, number of parameters; wAICc, AICc weight; LL, maximum log-
likelihood; De, percentage deviance explained (a measure of the struc-
tural goodness of fit of the model). Model sequences are ordered by
increasing wAICc.

Geographical weights in biodiversity models
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correlation coefficients were generally lower for LMs and GLMs,

providing support for the use of these methods (Wheeler &

Tiefelsdorf, 2005).

Future studies could explore alternative spatial weighting

methods. For example, the adaptive spatial kernel option in

GWR (Fotheringham et al., 2002) or Markov random fields (e.g.

Kindermann & Snell, 1980), determined either by a distance

metric or a nearest-neighbour formulation, might be useful for

larger or more heterogeneous regions. Such utility could arise

where the distance metric approximates a step function, which is

zero in non-neighbouring areas. Such an approach would have

the advantage of inducing sparseness in the covariance matrices,

which can reduce computational time with efficient program-

ming (Stanaway et al., 2011). The bandwidth could also be

treated as a model parameter and optimized during model

fitting; however, this option might be computationally challeng-

ing and detract from the simplicity of the approach we propose.

Finally, different schemes could be used to aggregate the site-

specific indices of model fit, reflecting different goodness-of-fit

criteria. For example, a weighted-average scheme could be used

to allow for preferential fits to certain geographic regions, areas

of high species diversity or sites with less estimation uncertainty.

This can be done regardless of the manner in which the spatial

weights are generated.

We simulated a simple dataset for the purposes of exposition

and development; however, one should bear in mind the con-

straints imposed by more complex, real ecological data and use

caution when interpreting the results or making predictions for

new areas. For instance, our use of three predictors for illustra-

tive purposes is unlikely to capture complex interactions and

collinearity with other predictors left out of the models. Further-

more, we assessed the extent to which site clustering over a

regular grid affected the performance of our method; however,

future studies should evaluate similar effects in spatially con-

strained sampling designs (e.g. along roads or reef edges),

common in ecological datasets. Finally, when there is evidence

for non-stationarity, extrapolation should be avoided because,

by definition, species–environment relationships will vary

locally and predictions remain highly uncertain where no

information is available on the strength or direction of such

relationships.

A few studies have examined the effects of the area of influ-

ence on model performance and the issue of spatial non-

stationarity by using GWR (Lieske & Bender, 2009; Murphy

et al., 2011; Gouveia et al., 2013). Local models tend to perform

better than regional models, and a model’s explanatory power

often decreases with the area of spatial influence (Foody, 2004;

Bickford & Laffan, 2006; Osborne et al., 2007). This decay of
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Figure 2 (A) Spatial scale analysis of
the simulated dataset comparing model
support from seven models using
geographically weighted regression
(GWR; left), a spatially weighted linear
model (sw-LM; middle) and a spatially
weighted generalized linear model
(sw-GLM; right). Shown are Akaike’s
information criterion corrected for small
sample sizes (AICc; top) and the
percentage deviance explained by each
model (De, bottom). Spatial scale varied
based on a Gaussian weighting with
bandwidth, as shown in Fig. S1. Model
predictors include seabed slope (Slope;
blue) varying at a local scale, benthic
irradiance (Irradiance; green) varying at
a subregional scale and sea surface
temperature (Temperature; red) varying
at a regional scale as depicted in Fig. 1.
(B) Normal scores of standardized
residual deviance (Q–Q plots) for the
geographically weighted regression
(GWR; top panel), spatially weighted
linear model (sw-LM; middle panel) and
spatially weighted generalized linear
model (sw-GLM; bottom panel) done on
the simulated dataset with best
bandwidth b = 0.05° latitude.
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across the study area for predictors of
the simulated dataset including seabed
slope (Slope; blue) varying at a local
scale, benthic irradiance (Irradiance;
green) varying at a subregional scale and
sea surface temperature (Temperature;
red) varying at a regional scale,
estimated using geographically weighted
regression (GWR; top), a spatially
weighted linear model (sw-LM; middle)
and a spatially weighted generalized
linear model (sw-GLM; bottom) of
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(b = 0.05° latitude). Parameter values
obtained for each predictor and based
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with a difference of < −0.1 (blue) or
> 0.1 (red) from GWR estimates.
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Figure 4 Spatial scale comparisons
from spatially weighted boosted
regression trees predicting species
richness (S) as a function of the
predictors Slope, Irradiance and
Temperature. (A) Importance of each
predictor (expressed in percentage
contribution) with increasing area of
influence (i.e. bandwidth). Envelopes
indicate standard deviations. (B)
Marginal effects estimated using a 0.05°
latitude bandwidth. Numbers in brackets
represent the contribution of each
predictor to the total deviance explained
in S.
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power with increasing bandwidth corroborates our results,

although the deviance explained only decreased with the area of

influence for spatially weighted GLMs. However, other studies

report the opposite pattern, whereby regional models account-

ing for large-scale gradients outperform local models (Rosa

et al. 2008; Mellin et al., 2010). These contrasting results dem-

onstrate a variety of possible patterns, and that the optimal

spatial scale for analysis will be dependent on the system and the

question being asked. For example, incomplete sampling of long

environmental gradients is likely to bias our perception of envi-

ronmental correlates of species richness (Rahbek, 2005). While

there is no universal guideline for choosing the optimal spatial

scale to consider (Rahbek, 2005), spatial weights can, in practice,

assist in identifying the most relevant predictors – whether the

objective is to predict biodiversity patterns over entire regions

(e.g. Mellin et al., 2010) or achieve the highest predictive accu-

racy possible at finer scales (e.g. Pittman et al., 2007).
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