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a b s t r a c t

Accurate estimates of the timing of extinctions (q) are critical for understanding the causes of major die-
off events and for identifying evolutionary or environmental transitions. Yet many studies have
demonstrated that sampling biases and underlying statistical assumptions affect the accuracy of model-
based estimates of extinction times (bq), and the added uncertainty contributed by inherent (laboratory)
dating errors has largely been neglected. Here we provide a general guide (model-selection key) for
choosing from among eight alternative ‘frequentist sampling’ (i.e., non-Bayesian) methods, differentiated
by their treatment of both the probability of record occurrence and uncertainties in record dates, the
most appropriate for a given record. We first provide a methodological framework to characterize time
series of dated records as a function of the number of records, the size of the interval between successive
records, and laboratory dating errors. Using both simulated data and dated Australian megafauna re-
mains, we then assess how the characteristic of a dataset's time series dictates model performance and
the probability of misclassification (false extant vs. false extinct). Among the four classic frequentist
methods providing highest model performance, Marshall's (1997) and McCarthy's (1998) methods have
the highest model precision. However, high model performance did not prevent misclassification errors,
such that the Gaussian-resampled inverse-weighted McInerny (GRIWM) approach is the only method
providing both high model accuracy and no misclassification issues, because of its unique down-
weighting interval procedure and its ability to account for uncertainties in record dates. Applying the
guideline to three time series of extinct Australian species, we recommend using Marshall's, McCarthy's
and/or GRIWM methods to infer q of both Thylacinus sp. and Genyornis sp., because each dataset is
characterized by many sightings and a low variance of the interval between records, whereas McInerny's
method better suits Diprotodon sp. due to an even lower interval variance.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Mass extinction events, characterized by palaeontologists as
high, planetary-wide species loss within a short geological time
frame (e.g., over 75% of species within less than two million years,
Barnosky et al., 2011), completely changed the global pattern of
species distribution by both removing lineages and triggering
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evolutionary opportunities (Jablonski, 2001). However, the causes
and mechanisms of mass extinctions, such as the end-Permian
mass extinction (Grice et al., 2005; Payne and Clapham, 2012;
Sun et al., 2012; Wang et al., 2014) or the late Quaternary mega-
fauna extinction, are still debated by scientists from disciplines
spanning palaeontology to archaeology and ecology (Alroy, 2001;
Brook and Bowman, 2002; Barnosky et al., 2004; Lorenzen et al.,
2011), in large part because of inaccuracy of inference of the
timing of a species' extinctions (q) (Flannery, 2002). Robust and
accurate inferences are essential to test, for example, the evidence
that the end-Permian transition was abrupt versus having multiple
extinction phases (Jin et al., 2000; Song et al., 2013; Wang et al.,
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Table 1
Description of the eight methods tested and categorized into five categories as a function of the kind of assumptions theymake about sampling intensity over time (p-sampling
assumption) and summary dataset characteristics (n, i, s2i, ε, s2ε; see Table 2 for complete description). For each method, we indicated model constraints (high performance
constraints) leading to its best performance from the sensitivity analysis (see Fig. 3 and Fig. A.6). For example, [x means that a high value of the ‘x’ parameter leads to high
model performance, considering that the number of arrows indicates the relative constraint intensity (i.e., [[ > [ and YY > Y).

Method p-Sampling assumption n i s2i ε s2ε High performance constraints

Strauss and Sadler (1989) [[n
McInerny et al. (2006) x x x e e [n, YYs2i
BRIWM Poisson stationary process [n, Yi
Solow et al. (2006) x x x x e YYε, Ys2i
McCarthy (1998) Marshall (1997) Recovery potential x x x e e [n, Ys2i
Roberts and Solow (2003) No assumptions x x x e e [[n, Yi
GRIWM (Bradshaw et al., 2012a) x x x x x [n, Yi, Yε
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2014), or that megafauna extinction was primarily climate- or
human-driven in South America (Johnson et al., 2013; Lima-Ribeiro
and Felizola Diniz-Filho, 2013) and Australia (Brook and Bowman,
2002; Wroe et al., 2013).

The megafauna extinction stalemate in particular persists pri-
marily because the estimated timing of these species' extinctions
(bq) is uncertain due to the variable quality of the dated precursor
fossil specimens, meaning that debates digress to matters of
opinion rather than accurately measured phenomena and scientific
hypothesis testing (Brook et al., 2013). Although quality fossil data
are essential to improve our inferences of past extinctions, palaeo-
ecological archives are inherently incomplete and geochronological
dating methods are characterized by errors of centuries to
millennia, so the reliability of q inference based only on their scant
information remains a major challenge. The absence of a species in
a particular site or temporal window does not necessarily mean it
was not present, so apparent declines of taxa in these recordsmight
simply reflect sampling artefacts rather than real trends in diversity
(Prideaux et al., 2007). Such absences might also arise for tapho-
nomic reasons (i.e., type of facies and sedimentary environments
that can prevent the preservation of remains), life-history traits
(e.g., taxa from lower trophic levels, because they are more abun-
dant, have a relatively higher potential for fossilization) and
ecological specialization (i.e., specialists living in a specific habitat
will have their remains fossilised only there, whereas generalists
will have an overall higher probability of being recorded). Evidence
from extinctions observed in modern times suggests that as a
doomed species approaches its final extinction date, population
size tends to decrease exponentially due to the synergistic feed-
backs (Brook et al., 2008) that lead to the extinction vortex (Fagan
and Holmes, 2006), which reduces the probability of discovering
fossil records near the terminal date and artificially truncates the
true temporal range of a species' persistence window (Signor-Lipps
effect; Signor and Lipps, 1982). Moreover, fossil records e retrieved
from specific sites where the rare phenomenon of preservationwas
possible e only describe local losses of species such that the last
date known cannot necessarily testify to a global extinction. Indeed,
in some cases apparent disappearances can be followed by the
subsequent reappearance of the species after further sampling (the
‘Lazarus’ effect; Keith and Burgman, 2004).

As population size tends to decline to incrementally lower
densities prior to extinction (Fagan and Holmes, 2006), it is logical
to assume that the last dated record of a species occurs sometime
before its true extinction (i.e., the death of the last individual).
Based on this assumption, many probabilistic methods (also called
“classical frequentist methods”, Alroy, 2014) have been developed
to provide a confidence interval around bq given a particular time
series of occurrence records, but uncertainties in dating techniques
(e.g., inherent laboratory errors in radiometric dating), and the
probability of sampling reliably dated specimens (i.e., sampling rate
and location) make inference complex. For example, Roberts and
Solow (2003) applied an optimal linear estimation method based
on a record of historical sightings of the dodo (Raphus cucullatus) to
determine the confidence interval surrounding its true extinction
year. That method was extended to account explicitly for error in
estimates of the record date for fossils (Solow et al., 2006), but
comparisons within and among species were still difficult due to
variation in sampling rates that can affect model performance
(Rivadeneira et al., 2009). McInerny et al. (2006) proposed another
frequentist-probabilistic method that incorporates sampling rate,
which was further modified by Bradshaw et al. (2012a) to take into
account the number and uncertainty of dates in the time series.

Each method is characterized by a set of statistical assumptions
conditioning its adequate application to a given time series (e.g.,
sampling probability uniformly distributed and independent, or
dating error being constant; Table 1 and Solow et al., 2006), which if
violated, can lead to the misclassification of a species as extinct or
extant (so-called Type I and II statistical inference errors, respec-
tively; Brosi and Biber, 2008; Jari�c and Ebenhard, 2010; Fisher and
Blomberg, 2012). In addition to methodological issues, the quality
(number of records, record interval, variation in dating error over
time) and the reliability of the datasets used to infer q (e.g., species
misidentification e Rasmussen and Prys-Jones, 2003; an erroneous
ceiling on apparent dates due the time limit of radiocarbon [14C]
dating validity e Walker, 2005) also strongly affect model perfor-
mance (Rivadeneira et al., 2009; Solow et al., 2011; Bradshaw et al.,
2012a; Lee et al., 2014). Various classical frequentist methods have
been tested and validated as a function of both the number of re-
cords and sampling intensity (Rivadeneira et al., 2009; Fisher and
Blomberg, 2012), highlighting performance problems specifically
when sampling probabilities decrease through time (Rivandeneira
et al., 2009). Newly emerging Bayesian methods can, if used
appropriately, reduce such performance issues and improve species
classification (endangered or about to go extinct; Alroy, 2014), but
the effect of inherent dating error and their variation over time on
model performance have barely been assessed (Bradshaw et al.,
2012a). As dating errors typically increase as sampling reaches
deeper back in time (such as in palaeontological time series;
Walker, 2005), providing rigorous measures of the biases generated
by dating errors on bq is therefore essential.

Here we explore how the characteristics of time series of dated
records, such as the number of occurrences, time gaps between
records, and uncertainties in measured dates, act and interact to
constrain different frequentist models used commonly to infer q.
More specifically, we provide both quantitative and qualitative
criteria for: (i) maximizing the inferential capability of eight clas-
sical methods used to generate confidence intervals for q; and (ii)
provide a general guideline for selecting the most appropriate
method to infer q from a given time series of dated records. We first
describe these eight frequentist methods focussing on their con-
ceptual assumptions with respect to five summary variables char-
acterizing the types of time series usually available (henceforth,



Table 2
Input and output variables involved in the sensitivity analysis.

Variable name Short description Range

n Number of records [3e100]
D Record date (or age) [�1000 to �15,000] in years
ε Dating error as a function of the record's date/age ε ¼ 0.1203*D � 1.298. Equation fitted using data from the Sahul fossil database

(unpublished). ε is modified as being selected from within a window of the
initial ε ± 30 years to include dating error variability

i Interval between two records
qt Theoretical (set) final extinction date �1000
i Average i over time series expressed as a percentage of

the entire observation period.
[40 to 6000], depends on both i and n; expressed in “years”

s2i Variance of i over time series expressed as a percentage of
the whole observation period

depends on i [3000 to 20 � 107]; expressed in “years”

ε Average ε over time series expressed as a percentage of
the whole observation period.

[160 to 7300], depends on both ε and n; expressed in “years”

s2ε Variance of ε over time series expressed as a percentage of
the whole observation period

depends on ε [400 to 15 � 107]; expressed in “years”
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‘time series’ characteristics'; Table 2). As six of these methods have
already been reviewed extensively (Rivadeneira et al., 2009;
Bradshaw et al., 2012a; Alroy, 2014), we mainly describe the
recently developed Gaussian-resampled inverse-weighted McI-
nerny approach (GRIWM, Bradshaw et al., 2012a), andwe introduce
a new variant of GRIWM, called BRIWM (see description below).
Second, based on both simulated times-series data and sensitivity
analyses, we develop an index of model performance accounting
for: (i) the probability that q falls within the model's estimated
confidence interval (i.e., the model's coverage probability); (ii) the
bias in model estimates; and (iii) the width of model's estimated
confidence interval to identify causes of variation in method per-
formance and to highlight the range of values of time series'
characteristics for each model that lead to its best performance.
Third, we apply each of the eight models to extant and extinct,
quality-controlled (i.e., dating quality checked) Australian mammal
time series, to assess each model's ability to minimize Type I and II
errors. Based on these results, we used a real-world demonstration
by creating and testing a model-selection key to select the most
appropriate model for inferring extinction from time series' char-
acteristics of three extinct, Australian late Quaternary ‘megafauna’
species (Thylacinus sp., Genyornis sp., and Diprotodon sp.).

2. Materials and methods

2.1. Model descriptions and time series' characteristics

Many studies have described and contrasted different fre-
quentist inference methods as a function of the data-sampling
regime (Rivadeneira et al., 2009; Bradshaw et al., 2012a). Such
time-series characterizations are typically designed to be easy to
implement and convenient for theoretical analyses, by assuming
that dated records follow well-established mathematical distribu-
tions (e.g., uniform or exponential; Bradshaw et al., 2012a), or
mimicking theoretical sampling intensity (Rivadeneira et al., 2009).
However, the ‘true’ distribution of sampling is rarely known, so we
first propose a statistical framework that can be easily applied to
characterize any given time series (Table 2). Here we propose to
characterize time series of dated records as a function of five var-
iables we refer to as ‘times series’ characteristics': (1) number of
records (n); (2) average and (3) variance of the interval between
successive records (i and s2i, respectively); and (4) average and (5)
variance of dating error (ε and s2ε, respectively) covering the time-
series range of the dated specimens.

We then compared eight differentmethods to infer q: (1) Strauss
and Sadler's (1989), (2) Robert and Solow's (2003), (3) McCarthy's
(1998), (4) Marshall's (1997), (5) Solow's (2006), (6) McInerny's
(2006) methods, (7) GRIWM (Bradshaw et al., 2012a) and (8) the
new bootstrap-resampled inverse-weighted McInerny (BRIWM)
method. BRIWMhas specifically been developed for this study in an
attempt to account for data reliability. All methods except Solow's
and GRIWM first assume that the species to which they are applied
are actually extinct, and that q lies somewhere between the last
record and the present. Because they account for dating error,
Solow's and GRIWM can allow extinction preceding the last record
if the error on that estimate is high. Each method describes q in
terms of time since the last record and, depending on the total
temporal span of all records, also estimates a desired level of con-
fidence (usually expressed as a ¼ 0.05) for bq. Such approaches are
criticized because they assume a constant or declining sampling
rate, but alternative Bayesian approaches either require a priori
information about population dynamics weakly supported from
records (Caley and Barry, 2014) or provide output not directly
comparable to classical frequentist methods (i.e., return a proba-
bility that a species is extinct because it was not sampled, instead of
the probability that the species was unsampled because it was
extinct; Alroy, 2014). We therefore do not consider Bayesian ap-
proaches in this paper. Finally, classical frequentist approaches all
take account of the total number of records, as well as the proba-
bility of presence of a species decreasing over time after the last
record. The methods can be further categorized into those
assuming a (i) uniform probability of record occurrence over time,
and those (ii) accounting for uncertainties in record dates. None
accounts (explicitly) for uneven sampling in space and related
potential biases due to site selection.

Strauss and Sadler's, Solow's and McInerny's methods assume a
uniform probability of record occurrence, but other methods relax
this assumption either by integrating some temporal variation [so-
called ‘recovery function’ e see Marshall (1997) and McCarthy
(1998) e calculated here as a function of a probability of sam-
pling fitted to each given time series following the Rivadeneira et al.
(2009) approach] or making no distributional assumptions about
the probability of sampling (Roberts and Solow, 2003; GRIWM:
Bradshaw et al., 2012a, and BRIWM], although independence
among records is still required. GRIWM and Solow's models are the
only ones we tested here that take into account the uncertainties in
record dates.While othermethods only depend on n, i, s2i (Table 1),
both GRIWM and Solow's include ε, but as Solow's assumes con-
stant dating uncertainties across samples, GRIWM assumes varia-
tion in these uncertainties (considering s2ε) by 10,000 (or more)
resamples of the standard deviation of each date from a Gaussian
distribution (Bradshaw et al., 2012a).

BRIWM is a new variant of GRIWM we developed for this
analysis to assess the importance of record reliability (i.e., the



F. Saltr�e et al. / Quaternary Science Reviews 112 (2015) 128e137 131
confidence in the method used for dating) against the impact of
dating uncertainties (i.e., the standard error of the estimated re-
cord's date). Like GRIWM, the model hypothesizes that the most-
recent records (i.e., those closest to the last appearance date) are
more useful in inferring bq as extinction than older dates, by down-
weighting the contribution of each dated record to bq depending on
its temporal distance from the most recent record. However,
instead of accounting for all records and uncertainty in dates, by
subsampling a large number of iterations (10,000 used here),
BRIWM creates a new time series of records by resampling the
original dataset (instead of resampling each date of the series into
the standard deviation, as does GRIWM) using a bootstrap tech-
nique with replacement, and calculates bq for each iteration. This
technique will modify both n (i.e., subsampling almost always de-
creases the number of unique records) and i (i.e., removing records
from the original time series either enlarges or reduces the size of
the intervals). From these 10,000 estimates of bq, we can calculate a
95% confidence interval using percentiles.
2.2. Simulated time series for sensitivity analysis and model
performance assessment

The aim of our sensitivity analysis (see below) is to assess how
variation in time series' characteristics (Tables 1 and 2) affects
model performance. Our analysis sets a theoretical q of 1000 years
before present (qt ¼ �1000), and we generated simulated time
series stochastically by selecting single values for each time series'
characteristic from within a specified range (Table 2) following a
Latin hypercube sampling approach (Fig. A.2) to achieve a robust
and efficient coverage of the parameter space (Saltelli et al., 2008).
This approach also ensures that each variable is represented in a
fully stratified design, without any prior knowledge of which var-
iables will be most influential on the output. For each input com-
bination, our models estimate the time of extinction (i.e., median
estimates were obtained using a ¼ 0.5; Lima-Ribeiro and Diniz-
Filho, 2014) and its 95% confidence interval.
2.3. Model performance index

Model performance is usually evaluated according to the
coverage probability of qt by a model's estimated confidence in-
terval (Rivadeneira et al., 2009), such that qt occurs in the interval
defined by the last record and the upper bound of the 95% confi-
dence interval. Such a metric favours methods that produce the
widest confidence intervals, so we developed a specific index of
model performance (f) that we applied to each of the eight
methods under the various simulated time series generated for the
sensitivity analysis. We assumed that model performance depends
on: (i) the coverage probability (o) of qt for each simulated time
series; (ii) the distance ðDðbq�qtÞÞ between the closest model's con-
fidence bound (e.g., lower, upper boundary or the median value)
that informs model accuracy; and (iii) the width of the model's
confidence interval that informs model precision.

We defined the best-performing model (highest f) as the one
providing a high coverage rate, and having both a low Dðbq�qtÞ and a
narrow confidence interval under various scenarios:

f ¼ ½ðο�w1Þ þ ðb�w2Þ þ ðg�w3Þ�=fmax

where ο ¼ sco/sctot with sco being the number of scenarios where
the model's confidence interval successfully covered qt and
sctot ¼ the total number of time-series scenarios generated for the
sensitivity analysis; b is a normalized measure of dispersion of
Dðbq�qtÞ in relation to qt such that: b ¼ qt=ðqt þ qD

ðbq�qtÞ
Þ, with qD

ðbq�qtÞ
being the percentile at 0.975 of all Dðbq�qtÞ calculated over all sce-

narios; g is a normalized measure of dispersion of the width of the
model's confidence interval in relation to a benchmark width (¼1
to have both the lowest width of confidence interval as benchmark
and to avoid technical issues due to a null numerator when the ratio
is calculated) such that: g ¼ 1/qCI, with qCI being the percentile at
0.975 of all confidence intervals calculated over all scenarios. Thus,
high values of f indicate better method performance. Note that f
can be applied to a single scenario with o ¼ 0 (no coverage) or 1
(coverage), qD

ðbq�qtÞ
¼ Dðbq�qtÞ and qCI ¼ confidence interval. As f is

unequally sensitive to variation in ο, b and g (see the detailed
sensitivity analysis of f; Fig. A.3), we integrated w1, w2 and w3 as
weighting coefficients to make f equally sensitive to ο, b and g

variation. Then, fmax ¼ 5.525 (i.e., the maximum value of f when
ο ¼ 1, b ¼ 1, and g ¼ 1) rescales f between [0, 1].

Finally, we calculated the range of values for each time series'
characteristic that maximizes f for each model. For each time se-
ries' characteristic, the range of values is quantified using a coeffi-
cient of variation (CV) calculated as the variance of i, s2i, ε, s2ε
divided by the median date of the length of the entire time series
(i.e., 7500 years for a time-series of length ¼ 15,000 years in those
generated for the sensitivity analysis). Because n does not refer to a
time period, its CV is calculated following its variance divided by
the median of the maximum number of records tested (i.e., 50 for a
maximum number of 100 records used in the sensitivity analysis).

2.4. Sensitivity analysis

We evaluated the relative effect of each time series' character-
istic for each simulated time series (n, i, s2i, ε, s2ε; see Table 2 for
complete description) on each model's performance based on their
relative effects on (i) the model's coverage probability, (ii) Dðbq�qtÞ
and (iii) the width of the confidence interval. We first constructed a
series of generalized linear models (GLM) where the model's
coverage probability (i.e., a binary response indicating whether or
not qt fell within the model's estimated confidence interval), Dðbq�qtÞ
and the width of model's estimated confidence interval were the
responses. The fixed effects represent the simulated times series'
characteristics (used as explanatory variables in the GLM) as well as
interactions between n and the four other variables to indicate how
their combined effects modify performance. We then compared all
GLM using the Bayesian information criterion (BIC) to identify the
most influential predictors and to down-weight any tapering ef-
fects (Link and Barker, 2006). Finally, we calculated the standard-
ized coefficients (x, described as an/SEn in Bradshaw et al. 2012b) for
each term of each GLM to indicate the relative influence of each of
the five time series' characteristics on the model responses, which
corrects for different scales of the predictors.

2.5. Australian datasets

For the real-world case study, we applied each of the eight
models to infer q and its confidence interval on six extant mammal
species in Australia for which time series of dated fossil specimens
exist (i.e., there are no true ‘extinctions’ for any of them): Dasyurus
maculatus, Lagostrophus fasciatus, Macropus rufogriseus, Perameles
gunnii, Petrogale brachyotis, and Tachyglossus aculeatus (Table B.1),
as well as for three mammal species that went extinct in mainland
Australia during the late Pleistocene or Holocene (Thylacinus sp.,
Genyornis sp., and Diprotodon sp.). We first calculated time series'
characteristics for each of the nine mammal species (Table B.1) and
we assessed a model's ability to deal successfully with statistical
inference errors of Type I and II by comparing bq (in years) with the
present date (0 before present, or ‘BP’), where bq should be lower
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than 0 BP for extant species, or higher than 0 BP for extinct species
(i.e., Type I and II errors, respectively). We calibrated the 170
radiocarbon dates using the Southern Hemisphere Calibration
curve (ShCal13, Hogg et al., 2013) to provide calendar-age estimates
from the OxCal radiocarbon calibration tool Version 4.1 (Ramsey,
2010).

3. Results

According to the three criteria used to build the model perfor-
mance index (i.e., high coverage probability, with both a low Dðbq�qtÞ
and a narrow confidence interval), Marshall's and McCarthy's
methods had the best performance (f ¼ 0.353 and 0.376, respec-
tively; Fig. 1a) followed by McInerny's (f ¼ 0.188), Strauss &
Sadler's and GRIWM methods (f ¼ 0.184 and 0.183, respectively).
None of the eight methods tested had maximum performance
(f ¼ 1) because they did not fulfil all of the three criteria required.
Methods generated an estimated error ðDðbq�qtÞÞ spanning
882 ± 1017 years (Strauss & Sadler's model, Fig. 1b) to 1557 ± 2463
years (BRIWM), and they provided confidence interval widths
ranging from few years (7.84 ± 8.8 years and 7.50 ± 8.7 years for
Marshall's andMcCarthy's methods, respectively; Fig. 1b) to several
millennia (3622 ± 9226 years for Roberts & Solow's method).
Strauss & Sadler's and GRIWM provided the best coverage proba-
bility of qt (successfully covered 64 and 56% of the simulated time
series, respectively; Fig. 1c) whereas Roberts & Solow's, Marshall's
andMcCarthy's methods had poorer coverage (successfully covered
<15% of the simulated post-last-appearance-date time series).

High f did not imply, however, that models guarded adequately
against both Type I and II inference errors for the case studies
(Fig. 2). Strauss & Sadler's, Roberts & Solow's and GRIWMwere the
only models that were able to predict accurately that the extant
species were still alive, whereas the others wrongly predicted a
premature extinction (Type 1 error; upper edge of boxplots <0;
Fig. 2a, Table B.2). However, Strauss and Sadler's and Roberts &
Solow's methods predicted the extinct Thylacinus sp. and Diproto-
don sp. as extant (Type II error; upper edge of boxplots >0; Fig. 2b,
Table B.2), whereas the other models predicted these species as
extinct. GRIWMwas the only model that avoided both Type I and II
errors for these real-world datasets (Fig. 2).
Time series' characteristics (n, i, s2i, ε and s2ε; Table 2) affected f
for each method in different ways for coverage probability, the size
of Dðbq�qtÞ and the width of the estimated confidence interval. Each
time series' characteristic had positive or negative effects on met-
rics, meaning that increasing the value of a characteristic either
increased (positive effect: x > 0; Fig 3) or decreased (negative effect:
x < 0) model outputs. Here we focused on Marshall's, McCarthy's,
McInerny's and GRIWM methods (the four other methods are
discussed in Appendix A, Fig. A.6). The average interval between
records ðiÞ and the average dating error ðεÞ positively affected both
GRIWM Dðbq�qtÞ (x ¼ þ55 and þ32, respectively) and confidence
interval (x ¼ þ29 and þ99, respectively), meaning that high i
increased the models' Dðbq�qtÞ. The number of records (n) negatively
affected McInerny's, confidence interval (x ¼ �57), meaning that
lower n led to wider confidence intervals in the same way as the
variance between records (s2i) affected GRIWM's Dðbq�qtÞ and con-
fidence interval (x ¼ �95 and �107, respectively). Some of the time
series' characteristics had combined effects on model outputs. For
example, n � i negatively affected GRIWM's Dðbq�qtÞ and confidence
interval (x ¼ �83 and �55, respectively; Fig. 3). Due to the negative
relationship between n and i (i.e., i decreased as n increased,
Fig. A.6), this combined effect means that increasing n reduced i and
led to a decrease in both Dðbq�qtÞ and confidence interval width. A
similar relationship exists between n and s2i (Fig. A.5), such as
n � s2i, negatively affecting McInerny's (x ¼ �48), Marshall's and
McCarthy's Dðbq�qtÞ (x ¼ �51 for the both methods), meaning that
increasing n decreased s2i and led to a lower Dðbq�qtÞ.

We used coefficient of variation measures (CV, Table 3) to
determine the optimal ranges of each time series' characteristic for
which eachmodel provided its highestf (see detailedmethod in SI.
2). Roberts & Solow's and Solow's best performances occurred
under high n (high f: CV > 0.63 vs. low f: CV ¼ 0.5; Table 3),
whereas Marshall's method performed better under lower n (high
f: CV ¼ 0.55 vs. lower f: CV ¼ 0.59). A low variability in dating
error (ε) improved both Solow and GRIWM (high f: CV ¼ 9.04 and
11.68, respectively vs. low f: CV ¼ 755.25 and 615.26, respectively;
Table 3). Both i and s2i drove performances of all models, but
Strauss & Sadler's had no optimal range for any characteristic. For
example, McInerny's, Solow's and GRIWM performed better under
short-duration i (CV ¼ 0.01 for both McInerny's and Solow's and
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Fig. 2. Boxplots of model outputs (extinction time bq, in years for Strauss and Sadler's, Roberts and Solow's, McCarthy's, Marshall's, McInerny's, Solow's, GRIWM, and BRIWM)
calculated for (a) six Australia extant species (Dasyurus maculatus, Lagostrophus fasciatus,Macropus rufogriseus, Perameles gunnii, Petrogale brachyotis, and Tachyglossus aculeatus) and
(b) three extinct Australian species (Diprotodon sp., Genyornis sp., and Thylacinus sp.). Each boxplot is calculated on model estimates (i.e., confidence interval at 2.5%, 50% and 95%)
from all six extant (a) and all three extinct (b) species (Table A.2) pooled together such that the central mark shows the median, the edges of the box are the 25th and 75th

percentiles, and the whiskers extend to the most extreme data not including outliers. Model estimates are compared with 1950 AD (0 years before present, dashed line), whereby
positive values indicate that the model predicts species as ‘extant’ and negative values indicate the species as ‘extinct’. For extant species, negative values indicate “Type I inference
errors” (i.e., species wrongly predicted as extinct) and for extinct species, positive values indicate “Type II inference errors” (i.e., species wrongly predicted as extant).
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CV ¼ 0.07 for GRIWM), whereas Roberts and Solow's required
longer-duration (CV ¼ 0.25). Low s2i promoted performance in
Marshall's, McInerny's, McCarthy's and GRIWM's methods,
whereas higher s2i led to better performance in Roberts & Solow's
and BRIWM.

4. Discussion

Selecting the most appropriate method to infer species extinc-
tion time from dated fossil records is not straightforward, and de-
cisions cannot be based on only one index. We argue that our
selection process provides a balance between various constraints
dictated by the time series' characteristics of each dataset. It could
also be applied to evaluate newmethods as they are developed. The
‘best’method should demonstrate: (i) robustness and flexibility for
successfully inferring extinction timings for various types of dated
records; (ii) the ability to account explicitly for most time series'
characteristics (i.e., high coverage probability); (iii) both high ac-
curacy and precision of inference (i.e., a low Dðbq�qtÞ and a narrow
confidence interval); and (iv) an ability to deal successfully with
Type I and II statistical inference errors. Our results showed that
there is no ‘best’method (maximum f < 0.4, Fig. 1a), but combined
interpretations of (i) f (Fig. 1), (ii) application to real datasets
(Fig. 2) and (iii) the sensitivity analysis (Fig. 3) provide enough in-
formation to create a model-selection key to address this task.

4.1. Model assessments: importance of intervals between records
and their dating errors

Although GRIWM had lower f than Marshall's, McCarthy's, and
McInerny's methods (Fig. 1a) due to the former's generally wider
confidence intervals (Fig. 1b), GRIWM synthesized essential char-
acteristics (i.e., robustness and flexibility) to be applied successfully
to most time series: (i) it generated both better accuracy (low
Dðbq�qtÞ) and a higher coverage probability (Fig.1b and c); (ii) it is the
only model among the eight we tested that deals adequately with
both Type I and II inference errors (Fig. 2); and (iii) it accounts for
the full set of time series' characteristics used to describe dated
records (Table 1). GRIWM presents two main model-specific char-
acteristics that improved its robustness and adaptive flexibility
given various record uncertainties: a down-weighting interval
procedure and a Gaussian resampling of the dating errors.

First, GRIWM weights later record intervals more strongly, thus
increasing the importance of low-density specimens as the species
approaches true extinction (Fagan and Holmes, 2006; Bradshaw
et al., 2012a). This weighting procedure counters the unrealistic
assumption of a stationary Poisson distribution (i.e., that records
are uniformly distributed along the time series; Solow et al., 1993)
made by Strauss & Stradler's, Solow's and McInerny's models. The
stationary Poisson distribution usually produces high model pre-
cision (Fisher and Blomberg, 2012) as supported by Solow's and
McInerny's results (Fig. 1b). However, narrow confidence intervals
weakened model performance when it did not offset Dðbq�qtÞ, thus
reducing Solow's coverage probability (e.g., Solow's, Fig. 1c) and
decreasing f (Fig. 1a). This ultimately leads these models to be
prone to Type I errors (e.g., Solow's and McInerny's; Fig. 2a,
Table B.2; Jari�c and Ebenhard, 2010). Similarly, Marshall's and
McCarthy's models failed to deal with Type I errors; they could
potentially be construed as the ‘best’ models because of their
higher f (Fig. 1a) driven by their narrow confidence intervals and
moderate Dðbq�qtÞ (despite a low coverage rate, Fig. 1b and c).

Second, GRIWM accounts for variation in dating errors
(Bradshaw et al., 2012a), thus necessarily widening its estimated
confidence interval compared to Solow's (which assumes no vari-
ation in dating error; Table 1), or Marshall's, McCarthy's and McI-
nerny's methods that do not account for dating error at all (Fig. 2b).
A wider confidence interval reduces GRIWM's accuracy compared
to Solow's (Fig.1c) and improves its coverage probability (and so, its
net performance f; Fig. 1), as well as decreasing the risks of making



Fig. 3. Relative importance of the time series' characteristics (n, i, s2i, ε, s2ε; see Table 2 for complete description) on metrics used to calculate the model performance index (see
equations in Section 2.3): the coverage probability of the theoretical timing of extinction (qt, panels aed), size of model estimation biases (Dðbq�qtÞ ¼ the difference between the
closest model's confidence bound to bq; panels a’ed’) and the width of the estimated confidence interval (panels a”ed”). We displayed results of the four methods [(a, a’ and a”)
McCarthy's, (b, b’ and b”) Marshall's, (c, c’ and c”) McInerny's, and (d, d’ and d”) GRIWM] among the eight methods tested, because they showed either the best model performance
or they successfully dealt with both Type I and II errors (results from the four remaining models e Strauss and Sadler's, Roberts & Solow's, Solow's, and BRIWM e are shown in
Appendices Fig. A.6). For each model and for each time series' characteristic (generated using a Latin hypercube within a range described in Table 2), we returned a standardized
coefficient (x) calculated as the estimated coefficient of a generalized linear model fitted to (i) the model's ability to cover qt, (ii) Dðbq�qtÞ and (iii) the confidence interval width divided
by its standard deviation.



Table 3
Coefficient of variation (CV) for the set of summary characteristics (n, i, s2i, ε, s2ε; see Table 2 for complete description) for the proportion of times series whereby each model
(Strauss and Sadler's, Roberts and Solow's, McCarthy's, Marshall's, McInerny's, Solow's, GRIWM, and BRIWM) provided both its high (þ) and low (�) performance index. For
each summary characteristic, the limit between (þ) and (�) is defined as the summary characteristic value fromwhich themodel performance index decline precipitously (see
detailed method in SI 3). Simulated time series were generated stochastically within a specified range (Table 1) following a Latin hypercube approach. For each model, CV is
calculated as the variance of i, s2i, ε, s2ε on (þ) and (�) time series, divided by themedian date of thewidth of the entire time series (i.e., 7000 years). Because n does not refer to
a time period, we divided its variance by the median of maximum number of records tested (i.e., 50).

n i s2i ε s2ε

(þ) (�) (þ) (�) (þ) (�) (þ) (�) (þ) (�)

Strauss and Sadler (1989) 0.59 0.59 0.21 0.18 0.40 0.31 e e e e

Roberts and Solow (2003) 0.65 0.54 0.25 0.12 0.43 0.29 e e e e

Solow et al. (2006) 0.63 0.55 0.01 0.19 0.03 0.39 9.04 755.27 e e

Marshall (1997) 0.55 0.59 0.12 0.19 0.23 0.39 e e e e

McCarthy (1998) 0.59 0.59 0.12 0.20 0.22 0.39 e e e e

McInerny et al. (2006) 0.59 0.60 0.01 0.21 0.01 0.39 e e e e

GRIWM (2012) 0.58 0.57 0.07 0.21 0.32 0.41 111.68 615.26 681.82 796.57
BRIWM 0.56 0.57 0.12 0.19 0.41 0.36 e e e e
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Type I errors (Fig. 2a). Nevertheless, although wider confidence
intervals can reduce Type I errors, poor model precision (wide
confidence intervals) such as those generated by Strauss & Sadler's
and Roberts & Solow's methods (Fig. 1b), leads to Type II errors
Fig. 4. Model selection guideline scheme. The most appropriate model is first selected as a f
s2ε; see Table 2 for complete description) calculated from each given record compared with
to the model). Solid arrows lead to only one model whereas dashed arrows (þcoloured text)
line colour). For each model, we specified (i) the performance index (f; Fig. 1a), (ii) the mo
(extant vs. extinct misclassification; see Fig. 2) and model accuracy and precision (i.e., Dðbq�qtÞ
from the f index calculated from simulated time series used for the sensitivity analyses (see
divided by the median date of the width of the entire time series. Because n does not refer to
records tested in the sensitivity analysis (i.e., 50). Accuracy and precision are expressed a
(Dðbq�qtÞ < 1000 years; confidence interval width < 1200); moderate (1000 � Dðbq�qtÞ < 1500 y
interval width � 2000). (For interpretation of the references to colour in this figure legend
(Fig. 2b). Strauss and Sadler's method assumes a stationary Poisson
distribution (which should theoretically narrow its confidence in-
terval), but its high sensitivity to low numbers of records inflates its
confidence interval (Strauss and Sadler, 1989; Rivadenera et al.,
unction of the coefficient of variation (CV) of the time series' characteristics (n, i, s2i, ε,
the closest value of benchmarked CVs (arrows under or above leading from the variable
lead to one of the three groups of methods differentiated by coloured boxes (þdashed
del's ability to deal successfully (yes) or unsuccessfully (no) with Type I and II errors
and confidence interval width, respectively; Fig. 1b). Benchmarked CVs are determined
details of methodology Fig. A.3). CVs are the variance of each time series characteristic
a time period, we divided its variance by the same median of the maximum number of
s thresholds (a three-bin histogram on Dðbq�qtÞ and confidence interval width): high
ears; 1200 � confidence interval width < 2000); low (Dðbq�qtÞ � 1500 years; confidence
, the reader is referred to the web version of this article.)
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2009; Fig. A.4). Such a wide confidence interval (even wider using
Roberts and Solow's models, Fig. 1b), makes models largely ineffi-
cient (Solow, 2005) because (i) it artificially improves coverage
probability (confidence intervals offsets Dðbq�qtÞ), biasing f, and (ii)
generates Type II error misclassification (Jari�c and Ebenhard, 2010);
Strauss & Sadler's and Roberts & Solow's models failed to predict
the extinction of Thylacinus sp. and Diprotodon sp. (Fig. 2b and
Table B.2).

More comparisons with the bootstrap variant of GRIWM
(BRIWM) support the idea that the temporal dependency of dating
errors is essential to improve performance. BRIWM neglects dating
errors and assumes that q can be accurately inferred from a sub-
sample of records of the original time series. It emphasises that
some records are more important than others and accounts for
dating error in q inference. We suggest that this method could be
potentially used to counter the assumption that all records are
equally reliable in term of data quality. The methods described in
this paper implicitly assume a high quality (reliability) of the un-
derlying dates examined (Solow et al., 2011), but this assumption
has to be checked carefully. Date reliability can be handled either by
developing a quality rating based on both robust and objective
criteria to select only highly reliable records, by rejecting obviously
uncertain or dubious records prior to analysis, or by other down-
weighting methods not described here (Solow et al., 2011;
Thompson et al., 2013; Lee et al., 2014). However, GRIWM's better
performance relative to BRIWM (i.e., better accuracy and precision;
Fig. 1) suggests either that dealing with unreliable dates requires
more complex methods (Thompson et al., 2013; Lee et al., 2014), or
that accounting for dating error explicitly (GRIWM) prevails over
record reliability (BRIWM).

4.2. Toward ‘ideal’ time series' characteristics for a given model

GRIWM's ability to handle both Type I and II errors successfully
does not preclude the application of other models if they are
cautiously applied to questions relating to definitively extinct
species and when the time series have certain characteristics
(Rivadeneira et al., 2009). Marshall's, McCarthy's and McInerny's
methods performed better when the time series had both high n
and low s2i (Fig. 3). These models' outputs are sensitive to n � s2i
(Fig. 3aec) because the negative correlation (Fig. A.5) between
these characteristics affects recovery potential (Marshall, 1997;
McCarthy, 1998) or sampling rate (McInerny et al., 2006), which
are central to calculating final extinction date. For example, using a
similar method to that used to calculate the recovery potential of
Marshall's andMcCarthy's models (Marshall, 1997; McCarthy,1998;
Holland, 2003; Farnsworth and Ogurcak, 2006), we used a function
of sampling probability that depended on the time series used to
calculate extinction time (Rivadeneira et al., 2009). However,
similar to McInerny's sampling rate (McInerny et al., 2006), such a
function delays the final extinction date when n is low and s2i is
high, which increases either Dðbq�qtÞ (Marshall's and McCarthy's;
Fig. 3a and b) or the width of the estimated confidence interval
(McInerny's; Fig. 3c), and ultimately decreases their respective
performance (Fig. 1a). As GRIWM accounts for dating error and
down-weights the influence of intervals between consecutive re-
cords, both ε and n� imost determine GRIWM's applicability (Fig. 3
and Fig. A.6). The more records are positioned near to the true
extinction date (i.e., the “up sampling” scenario described by
Rivadeneira et al., 2009) and the lower the average dating error (ε),
the better GRIWMperforms. First, increasing the number of records
decreases the average interval duration (Fig. A.5) and because of
GRIWM's down-weighting procedure, the youngest date intervals
are giving more influence. Second, ε characterises the precision of
the dates and depends on the limits of dating (e.g., 14C), where
radiometric (14C) dating in particular provides lower dating errors
for the most recent samples (Walker, 2005).

4.3. Example of model-selection key applications

Ideal time series are rarely available, so our model-selection key
helps to choose the most appropriate model for a given dataset
(Fig. 4). For example, applied to dated fossil records of three
Australian extinct species, we recommend using GRIWM or/and
Marshall's method on Thylacinus sp., GRIWM or/and Marshall's or/
and McCarthy's on Genyornis sp., and McInerny's method on
Diprotodon sp. First, the coefficients of variation for the character-
istics of the Thylacynus sp. time series (Table B.1) matched Mar-
shall's (n), GRIWM (i) and both Solow's and McInerny's (s2i)
requirements (Fig. 4). However, (i) Marshall's and GRIWM per-
formed better (high precision and moderate accuracy, Figs. 1aec
and 4) than Solow's and McInerny's and (ii) GRIWM avoided
misclassification (Type I and II errors; Fig. 2). Second, although
many methods are appropriate to infer extinction timing for Gen-
yornis sp. such as GRIWM (i and ε), Marshall's, McCarthy's and
BRIWM (s2i), we recommend using Marshall's, McCarthy's and
GRIWM for the same reason as described for Thylacynus sp. Finally,
McInerny's and Solow's both suited Diprotodon sp (s2i; Fig. 4 and
Table A.2), but McInerny's performed better than Solow's mainly
due to a better coverage probability and higher model precision
(Fig. 1aec).

5. Conclusion

Estimates of time of extinction depend highly on the sensitivity
of the method used to a time series' characteristics. Choosing a
suboptimal method can lead to misclassification of extinction
events (i.e., extant or extinct) and thus lead to incorrect conclusions
about ecological processes driving extinctions. However, the
robustness of many frequentist (non-Bayesian) methods is highly
sensitive to inherent (laboratory) dating errors. Among the four
frequentist methods providing highest model performance,
Marshall's (1997) and McCarthy's (1998) methods had the highest
precision. However, the Gaussian-resampled inverse-weighted
McInerny (GRIWM) approach is the only method providing model
accuracy as well as no misclassification issues because of its
inherent down-weighting interval procedure and because it ac-
counts for uncertainties in record dates. With inference errors in
mind, we suggest that GRIWM, Marshall's, McCarthy's & McI-
nerny's methods can provide reasonably accurate estimates of a
species' extinction time.
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