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Abstract

The Vulnerable (IUCN) whale shark spans warm and temperate waters around the globe. However, their present-day

and possible future global distribution has never been predicted. Using 30 years (1980–2010) of whale shark observa-

tions recorded by tuna purse-seiners fishing in the Atlantic, Indian and Pacific Oceans, we applied generalized linear

mixed-effects models to test the hypothesis that similar environmental covariates predict whale shark occurrence in

all major ocean basins. We derived global predictors from satellite images for chlorophyll a and sea surface tempera-

ture, and bathymetric charts for depth, bottom slope and distance to shore. We randomly generated pseudo-absences

within the area covered by the fisheries, and included fishing effort as an offset to account for potential sampling bias.

We predicted sea surface temperatures for 2070 using an ensemble of five global circulation models under a no

climate-policy reference scenario, and used these to predict changes in distribution. The full model (excluding stan-

dard deviation of sea surface temperature) had the highest relative statistical support (wAICc = 0.99) and explained

ca. 60% of the deviance. Habitat suitability was mainly driven by spatial variation in bathymetry and sea surface

temperature among oceans, although these effects differed slightly among oceans. Predicted changes in sea surface

temperature resulted in a slight shift of suitable habitat towards the poles in both the Atlantic and Indian Oceans (ca.

5°N and 3–8°S, respectively) accompanied by an overall range contraction (2.5–7.4% and 1.1–6.3%, respectively). Pre-

dicted changes in the Pacific Ocean were small. Assuming that whale shark environmental requirements and human

disturbances (i.e. no stabilization of greenhouse gas emissions) remain similar, we show that warming sea surface

temperatures might promote a net retreat from current aggregation areas and an overall redistribution of the species.
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Introduction

Changes in climate, such as warming temperatures,

are expected to alter the current distribution of species

(Thomas et al., 2004; Parmesan, 2006; Wernberg et al.,

2011). Despite a bias of studies towards terrestrial hab-

itats (Richardson & Poloczanska, 2008), there is

mounting evidence for distributional shifts in the mar-

ine environment (e.g., Edwards & Richardson, 2004),

which generally result in changes in pole-ward latitu-

dinal (e.g., Perry et al., 2005) or depth (e.g., Dulvy

et al., 2008) ranges. These shifts have been reported

in species as divergent as plankton (Beaugrand et al.,

2009), demersal fish (Perry et al., 2005; Dulvy et al.,

2008) and macroalgae (Wernberg et al., 2011).

However, assessing how much the distribution of spe-

cies will be affected by climate change implies that the

current distribution of the species is adequately identi-

fied.

A species’ distribution and its habitat requirements

can be estimated by modelling information on occur-

rence together with environmental correlates (Guisan &

Zimmermann, 2000). Species distribution models (also

known as ecological niche models and bioclimatic

envelope models) have now been used for many mar-

ine species including reef fish (Mellin et al., 2010),

mammals (e.g., Praca & Gannier, 2007) and sharks

(McKinney et al., 2012; Sequeira et al., 2012). However,

applying such models to highly migratory marine spe-

cies is particularly challenging due to poor detection

(Elith & Leathwick, 2009), lack of recorded occurrences

in the open ocean (McKinney et al., 2012), and the large

geographical range of the species under consideration

(Sequeira et al., 2012, 2013a).
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The whale shark (Rhincodon typus Smith 1828), the

largest of all fish, has a circumglobal range between

30°N and 35°S (Compagno, 2001). This range was

defined based on occasional occurrences and on the

range of temperatures where the species is expected to

occur: tropical/warm temperate. Whale sharks occur

regularly at the ocean surface within a narrow range of

sea surface temperatures (Sequeira et al., 2012), possibly

to assist thermoregulation (Thums et al., 2012). Like

most marine organisms (Tittensor et al., 2010), and

especially ectotherms, ambient temperatures directly

influence metabolic processes. Therefore, changes in

climate are likely to affect whale shark distribution or

abundance as they adapt to new temperature regimes

and changing prey distributions (Gutierrez et al., 2008).

Whale sharks are regularly recorded in specific loca-

tions near shore where they occur seasonally (Sequeira

et al., 2013b), and to where they attract substantial tour-

ism interest due to their innocuous behaviour and large

size (e.g., C�ardenas-Torres et al., 2007). Concerns about

population declines driven by human activities such as

illegal fishing (Riley et al., 2009), habitat disturbance

due to tourism (Heyman et al., 2010) or shipping (Speed

et al., 2008), have prompted a research focus on docu-

menting migratory pathways to determine whether

partial-range protection is sufficient to ensure persis-

tence at current aggregation locations (Rowat, 2007;

Bradshaw et al., 2008; Sequeira et al., 2013b). In addition

to these direct threats, climate change might already be

affecting whale sharks. However, the species’ high

mobility and the lack of extensive occurrence data

mean that teasing apart spatial and temporal patterns is

problematic (Sequeira et al., 2013a). Thus, determining

whether departures from current distributional limits

(Turnbull & Randell, 2006; Rodrigues et al., 2012) or

temporal patterns in relative abundance (e.g., Brad-

shaw et al., 2008) are linked to changing temperatures

(e.g., Sleeman et al., 2007) is equally difficult.

Statistical tools can facilitate inference in this regard.

For example, known occurrences can be used to define

the current distribution of a species, and future distri-

butions can be projected by coupling climate forecasts

derived from global circulation models (e.g., Ara�ujo

et al., 2005). Despite the known limitations of these sta-

tistical approaches (Elith & Leathwick, 2009), confi-

dence in their outcomes can be improved by

addressing potential biases in occurrence data (Phillips

et al., 2009; Barbet-Massin et al., 2012) and better under-

standing how abiotic conditions and dispersal potential

have influenced species’ geographic distributions over

time (Barve et al., 2011). Another important way to

improve predictions derived from global circulation

models, especially from a conservation perspective, is

by downscaling the coarse resolution (2.5–5-° grid cells)

of the forecasts (Hannah et al., 2002), and generating

multi-model climate projections (Fordham et al.,

2013b). Estimates of range shifts under climate change

can be further strengthened by coupling correlative dis-

tribution models to ecological processes, when ade-

quate data are available to determine conceptual

structural relationships (Fordham et al., 2013a).

For the first time, we used a global dataset of pelagic

whale shark sightings derived from tuna purse-seine

fisheries operating in the Atlantic, Indian and Pacific

Oceans to: (i) predict the spatial distribution of whale

shark habitat suitability across three ocean basins; and

(ii) extend our projections to a future scenario of ocean

warming based on a no climate-policy reference (i.e. no

stabilization of greenhouse gas emissions). Following

our previous work where we derived ocean-basin scale

predictions for whale shark distribution and temporal

trends (Sequeira et al., 2012, 2013a,b), our overarching

aim here was to derive realistic predictions of the spe-

cies current geographical (circumglobal) range and pro-

vide a modelling tool for exploring the species’ future

distribution under anticipated climate change.

Materials and methods

Data

We obtained whale shark presence data (henceforth, ‘sight-

ings’) from the logbooks of tuna purse-seine fisheries. While

impounding tuna schools with a purse-seine net, these tuna-

targeting fisheries often also surround (and subsequently

release) whale sharks (Chassot et al., 2009). The date and loca-

tion (0.01° precision) of these whale shark-associated net sets

were recorded in the logbooks, and data were provided by the

Institut de Recherche pour le D�eveloppement (France) and

Indian Ocean Tuna Commission for the Atlantic and Indian

Oceans, and by the Secretariat of the Pacific Community for

the western Pacific Ocean (Table 1 and Fig. 1).

The full dataset spans the three major oceans with a maxi-

mum temporal coverage of 31 years for the Atlantic Ocean

(1980–2010) from 21°N to 15°S and 34°W to 14°E, 17 years

(1991–2007) in the Indian Ocean from 30°N to 30°S and 35 to

100°E and 11 years (2000–2010) in the western Pacific Ocean

from 15°N to 15°S and 130°E to 150°W (Table 1 and Fig. 1).

Data included (i) the number of whale shark sightings

(Table 1 and Fig. 1a) and location (longitude and latitude at

0.01°precision); and (ii) fishing effort (days; Fig. 1b) per month

and per year pooled for each 5° of longitude by 5° of latitude
(5-° grid cell) both in the Indian (6618 records) and western

Pacific (2272 records) Oceans, and for both 5-° and 1-° grid

cells in the Atlantic Ocean (maximum of 18 277 records), and

were therefore comparable. No information was made avail-

able on vessel or trip units for any ocean, or on the specific

timing of sightings. The data from the western Pacific Ocean,

even though representative of total tuna purse-seine fisheries

in the area (P. Williams pers. comm.), were incomplete
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Table 1 Number of whale shark sightings in each ocean per decade as recorded by tuna purse-seine fisheries (source: Indian

Ocean Tuna Commission and the Institut de Recherche pour le D�eveloppement, France for the Atlantic [Atl] and Indian [Ind], and

Secretariat of the Pacific Community for the western Pacific [Pac]). See also Fig. 1. Numbers of sightings are split by quarters of the

year: January–March, April–June, July–September and October–December). Boldface indicates data used to fit models. Numbers for

the western Pacific are derived from observer data only

January–March April–June July–September October–December Totals

Period Atl Ind Pac Atl Ind Pac Atl Ind Pac Atl Ind Pac Atl Ind Pac

1980–1989 2 – – 405 – – 310 – – 17 – – 734 – –

1990–1999 2 92 – 518 599 – 543 40 – 12 36 – 1075 767 –

2000–2010 3 23* 314 147 212* 167 300 27* 189 38 155* 185 488 417* 855

Totals 7 115 314 1070 811 167 1153 67 189 67 191 185 2297 1184 855

*Indian Ocean data are for the period 2000–2007.
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Fig. 1 Fisheries data derived from tuna purse-seine fishery logbooks in the Atlantic, Indian and western Pacific Oceans. (a) Sightings

from 1980 to 2010: 4336 whale sharks records, with 53% of sightings in the Atlantic, 27% in the Indian from 1991 to 2007, and 20% in the

western Pacific from 2000 to 2010. Shaded area shows whale shark geographical range (WS range) defined by the International Union

for Conservation of Nature, and thick, grey lines mark current latitudinal range (Compagno, 2001). (b) Tuna purse-seine fishing effort

for the Atlantic, Indian and western Pacific Oceans (the common resolution of 5 º was used for easier comparison). Data from the east-

ern Pacific (dots within inset) consisted of locations without information on year or season of sighting (NA in Map b) and were thus not

included in the analysis.
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because access was not granted from all fleets registered with

the Secretariat of the Pacific Community.

Because whale shark numbers fluctuate seasonally

(Table 1), with peaks of occurrence in different seasons

(referred to as ‘quarters’ of the year) in each ocean and in a

spatially inconsistent manner (Sequeira et al., 2013a), we first

defined maximum suitable whale shark habitat based on sea-

son in which the highest number of sharks was recorded for

each ocean. A seasonal maximum of 314 whale sharks was

recorded in the western Pacific between January and March,

811 in the Indian Ocean between April and June, and 1153

between July and September in the Atlantic Ocean (Table 1).

Binary data (presence and absence) are required for bino-

mial estimation in regression models; therefore, we generated

pseudo-absences (10 : 1 pseudo-absence:presence ratio, fol-

lowing Barbet-Massin et al., 2012) based on a random spatial

distribution within the area covered by the fisheries (excluding

presence locations). We used the srswor function (simple ran-

dom sampling without replacement) from the {sampling} package
in the R programming language (R Development Core Team,

2012), and generated random pseudo-absences among non-

presence grid cells in each ocean within the same season for

which the presences were being considered. To assess the

influence of the chosen pseudo-absences, we generated each

set 10 times prior to their inclusion in the spatial GLMM

(described below).

We collated an environmental dataset at a 9 km resolution

composed of six physical variables: (i) distance to shore (shore;

km) calculated with the Near tool in ArcGIS 9.3.1TM (Redlands,

CA, USA) using a world equidistant cylindrical coordinate

system; (ii) mean depth (depth; m); and (iii) slope (slope; °)
derived from the one-minute grid of the General Bathymetry

Chart of the Oceans (GeBCO, 2003); (iv) mean; and (v) stan-

dard deviation of sea surface temperature (SST and SSTsd; °C)
derived from daytime measures from the Advanced Very

High Resolution Radiometer (AVHRR) PathFinder version 5.0

NOAA, Washington, DC, USA; and (vi) mean concentration

of chlorophyll a (Chl a; mg m�3) (an index of primary produc-

tivity) derived from the Sea-viewing Wide Field-of-view Sen-

sor (SeaWiFS; NASA, Washington, DC, USA). We calculated

mean sea surface temperature and its standard deviation and

mean chlorophyll a based on weekly satellite measures avail-

able within the total period covered by the fisheries in each

ocean using ArcToolBox functions from ArcGIS 9.3.1TM auto-

mated with Python scripts. We also included quadratic terms

for depth and SST as predictors in the models, as detailed

below. We assessed the monotonic relationship between pre-

dictors with the pairs.panels function in the package {psych}
in R using the Spearman’s rank correlation (q).

The environmental dataset for each ocean matched the

ocean-specific season of maximum whale shark abundance.

Areas where environmental predictors were not available

(e.g., due to cloud cover) were excluded from the analysis

(and are shown in white in the resulting prediction maps).

Generalized linear mixed-effects models

We applied generalized linear mixed-effects models (GLMM)

with a binomial error distribution and a logit link function to

the full, three-ocean dataset. To account for spatial bias in

sampling effort without reducing the spatial resolution of the

dataset, we included this variable as an offset, and used the

highest resolution available in each ocean. The mixed-effects

models included several possible combinations of the fixed

effects (i.e. environmental predictors – Table 2) as well as a

spatial random effect that represents unobserved random var-

iation within each 1-° grid cell. Including this random effect

reduced the spatial autocorrelation observed in the residuals

(Sequeira et al., 2013a). To stabilize parameter estimation

within the lmer function, we standardized the explanatory

variables by centring depth and SST, and log-transforming

mean Chla, shore, slope and also effort. We also included the

interaction terms ocean 9 depth, ocean 9 slope and

Table 2 Summary of generalized linear mixed-effects models

relating probability of whale shark occurrence to ocean prop-

erties in the Atlantic, Indian and western Pacific during the

season of peak occurrences for each ocean. Slope, distance to

shore (shore), depth and its quadratic term referred to

together as physical variables (Phys); mean sea surface tem-

perature (SST; mean weekly values within the seasons covered

in each ocean at a 9-km grid resolution), its quadratic term

(SST2) and standard deviation altogether referred to as ‘SST

variables’ (SSTall). Average chlorophyll a is represented as

Chla (mean weekly values within the seasons covered in each

ocean at a 9-km grid resolution). Shown for each model are

biased-corrected model probabilities based on weights of

Akaike’s information criterion corrected for small sample sizes

(wAICc, only >0.0001 shown), percentage of deviance

explained (%De), 10-fold cross validation error (CV error) and

kappa statistics. Note: All models included an offset term for

effort and a spatial random effect (1-° grid cell). An interaction

term between ocean and depth, slope or SST was also

included whenever these predictors were present. The GLMM

(with a logit link function) can be expressed as: logit

ðPresenceÞ ¼ aþi þciZi þ �i þ logðfishingeffortÞ; where Presence is

the expected mean probability of sightings occurrence. X and

Z represent the fixed and random covariates used in the mod-

els: the environmental predictors and the spatial grid respec-

tively. b and c represent the coefficients associated with the

fixed and random effects, respectively, and a is the intercept.

The log of fishing effort was included as an offset. The index

i corresponds to the number of observations among grid-cells

Model wAICc %De CVerror kappa

Phys + SST + SST2 0.99 57.9 0.09 0.64 � 0.03

Phys + SSTall – 57.8 0.09 0.64 � 0.03

Phys + Chla – 57.3 0.09 0.64 � 0.03

Phys – 56.9 0.09 0.59 � 0.03

depth + depth2 – 56.8 0.12 0.58 � 0.03

SST + SST2 – 56.5 0.09 0.57 � 0.03

SST + SST2 + Chla – 56.5 0.09 0.55 � 0.04

SSTall – 56.5 0.09 0.54 � 0.04

depth – 55.9 0.09 0.22 � 0.04

slope – 55.9 0.09 0.30 � 0.04

Chla – 50.8 0.11 0.33 � 0.03

Shore – 48.6 0.09 0.33 � 0.03
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ocean 9 SST, to test the hypothesis that these predictors had

similar predictive power in every ocean. To account for non-

linear dependencies of occurrence probability with both sea

surface temperature (whale sharks mostly occur within a spe-

cific range of temperatures; Sequeira et al., 2012) and depth

(whale shark are commonly seen near shore, so possibly

within specific depth ranges), we included the quadratic terms

for depth and mean sea surface temperature through a sec-

ond-order polynomial function using the poly in the {stats}
package in R.

We used Akaike’s information criterion corrected for small

sample sizes (AICc) to provide an index of Kullback-Leibler

(K-L) information loss that we used to assign relative strengths

of evidence to the different competing models (Burnham &

Anderson, 2004) and the corresponding weights (wAICc) to

compare model probabilities and allow for multi-model infer-

ence (instead of inference based only on the top-ranked

model). We used percentage of deviance explained (%De) to

quantify goodness-of-fit, Cohen’s Kappa statistic (j) to assess

the model’s predictive power (Cohen, 1960), and calculated

mean prediction error for the model with highest support

using a 10-fold cross-validation (Davison & Hinkley, 1997).

Global projection

We compiled a worldwide environmental dataset as described

above and including the same predictors. Here, we used sea-

sonal averages for sea surface temperature and chlorophyll a

for the last decade (2000–2012) by using data derived from the

Moderate Imaging Spectroradiometer (MODIS) Aqua avail-

able online (seasonal climatology maps; http://oceancolor.

gsfc.nasa.gov/cgi/l3). After fitting the GLMM with the tuna

purse-seine data and running predictions for the entire area

covered by the fisheries, we used a model-averaging approach

(based on wAICc) to project habitat suitability by including the

worldwide dataset under current (2000–2012) conditions. As a

qualitative validation, we overlaid the currently known loca-

tions for whale shark seasonal occurrence (as compiled in

Sequeira et al., 2013b) onto these global habitat suitability

maps.

Climate change projections

Using the freeware package MAGICC/SCENGEN5.3 (Model

for the Assessment of Greenhouse-gas Induced Climate

Change – a regional climate SCENario GENerator) (www.cgd.

ucar.edu/cas/wigley/magicc/) (Fordham et al., 2012), we

generated monthly forecasts of expected change in sea surface

temperature in 2070 (relative to 1995) under a no climate-

policy reference scenario (no stabilization of greenhouse gas

emissions) (cf. MiniCAM Ref. in Clarke et al., 2007). We gener-

ated climate change forecasts using five atmospheric-ocean

global circulation models (GCM): CCSM-3, MRI-CGCM2.3.2,

ECHAM5/MPI-OM, MIROC3.2 (hires) and UKMO-HadCM3

(terminology follows CMIP3 Multi-Model Dataset Archive

naming convention; www-pcmdi.llnl.gov/ipcc/about_ipcc.

php). These were chosen based on their skill in predicting glo-

bal sea surface temperatures for the baseline period 1981–2000

(Fordham et al., 2011), using six alternative skill rankings:

model bias (i.e. the difference between model and observed

spatial means averaged over a user-specified area), pattern

correlation, standard and centred root mean-square error and

comparison indices devised by Reichler & Kim (2008) and

Taylor (2001). We ranked the GCMs according to each statistic

and calculated the seasonal and annual cumulative rank (for

specific model rankings see Fordham et al., 2013b), and used

bilinear interpolation of the GCM data (2.5-° grid cells to a

finer resolution of 0.5-° longitude/latitude) to reduce disconti-

nuities in the perturbed climate at the GCM grid-box bound-

aries (Fordham et al., 2011). We calculated an average change

expected per grid cell across months for each season defined

here as each quarter of the year (i.e. January–March, April–

June, July–September and October–December), and then

downscaled the multi-model climate average anomalies using

the ‘change factor’ empirical method. With this method, the

low-resolution climate anomaly is added directly to a high-

resolution (9-km grid cells) observed sea surface temperature

baseline centred on or around 1990 (Fordham et al., 2012). We

used these forecasts of sea surface temperature to generate

predictions of worldwide whale shark habitat suitability using

our species distribution models. We considered the range of

predictor values used to fit the model, and masked areas

where model predictions occurred outside the environmental

space used for the original model fit.

Results

Spatial patterns of occurrence and sampling effort

Whale shark sightings in the Atlantic and Pacific

Oceans occurred mostly where sampling effort was

highest (Fig. 1), whereas most records in the Indian

Ocean fell within the Mozambique Channel, which had

lower sampling effort than in the Indian central-west

area (Fig. 1b). There was generally higher effort in the

Pacific Ocean (Fig. 1b; >40 000 fishing days in some 5-°
grid cells), even though the Pacific time series covered

only the last decade (i.e. only one-third of the duration

of the Atlantic Ocean dataset; Table 1). Within the area

covered by the fisheries, mean depth in sighting loca-

tions was similar in all three oceans (ca. 3800 m; Fig.

S1) but the Pacific bathymetric range was wider and

average distances to shore were slightly shorter (ca.

265 km). In the Indian Ocean average distance to shore

was greater (ca. 435 km). Sea surface temperature var-

ied among the three oceans (Fig. S1) with cooler tem-

peratures in the Atlantic ranging from 19.4 to 28.3 °C
(� 0.31–7.2; July–September), between 25.2 and 31.2 °C
(� 0.39–2.57, April–June) in the Indian, and between

26.7 and 30.1 °C (� 0.19–1.36; January–March) in the

western Pacific, with the latter having the lowest stan-

dard deviation. Chlorophyll a values averaged 0.75,

0.18 and 0.11 mg m�3 in the Atlantic, Indian and Paci-

fic, respectively.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 778–789
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Habitat suitability prediction

The percentage of deviance explained was highest

(58%) for the model including all physical and temper-

ature variables (except standard deviation for sea

surface temperature), a spatial random effect (1-° grid

cell) and an offset for effort (Table 2). Statistical sup-

port (wAICc) was highest for the same model (0.99;

Table 2). As a result of the interaction terms (SST, slope

and depth interactions with ocean) within the model

with the highest statistical support, we found evidence

for a different effect of sea surface temperature and

depth in each ocean, with both predictors affecting

whale shark occurrence in the Atlantic, only sea

surface temperature in the Indian, and only depth in

the Pacific Ocean.

The resulting GLMM prediction maps (Fig. 2) show

suitable habitat in different areas in the Atlantic from

July to September, with higher suitability (>0.8) around
Gabon, Congo and Equatorial Guinea. The model also

predicted high suitability (>0.6) around Côte d’Ivoire,

Ghana and B�enin, Cape Verde and Mauritania. In the

Indian Ocean, the area around the Mozambique Chan-

nel and close to shore in the south-eastern side of the

African continent had the highest suitability (ca. 0.3)

during the months of April to June. In the western Paci-

fic, the central portion of the total area covered by the

fisheries had the highest suitability during the first

quarter of the year, but predicted suitability there was

the lowest of all three oceans examined (ca. 0.1, equal

to prevalence used in the models, i.e. ratio of pres-

ences/pseudo-absences).

World projection of habitat suitability

Only the area between ca. 40°N and ca. 35°S (Fig. 3)

had environmental variables within the range used to

fit the GLMM. Exceptions occur in some seasons for

areas around the west coast of South America and

southwest Africa (Fig. 3). In the Atlantic Ocean, highest

habitat suitability was patchily distributed in the north

(e.g., Gulf of Mexico, Mediterranean Sea, North West

coast of Africa) and south (between South America and

Africa, but not farther south than 35°S). In the Indian

Ocean, areas with highest habitat suitability were

mostly near shore; for example: in the Bay of Bengal,

Arabian Sea, Mozambique Channel and off Ningaloo

Reef (Western Australia). In the western Pacific, highest

habitat suitability (albeit lower than in the other oceans)

occurred throughout the year (mostly in the central

area covered by the tuna purse-seine fisheries).

Projections of future whale shark distribution

The average anomaly forecast for each season in 2070

resulted in an increase of around 0.8–2 °C (Fig. S2)

mostly within the region between 30°N and 35°S (com-

monly considered the whale shark’s current latitudinal

range; Compagno, 2001). Forecasting suitability based

on the 2070 sea surface temperature scenario resulted

in a weak but evident pole-ward shift of habitat (Fig. 4

and compare with Fig. 3), mostly in the Atlantic and

Indian Oceans. We also observed a general contraction

in habitat suitability in 2070 (Table 3 and Fig. 4) with

loss of suitable area (in percentage of 9-km grid cells, as
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Fig. 2 Predicted whale shark habitat suitability within the area covered by tuna purse-seine fisheries in the peak whale shark

occurrence seasons: July–September in the Atlantic, April–June in the Indian and January–March in the western Pacific.
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per model resolution) both in the Atlantic and Indian

Oceans for most of the year. A maximum loss of ca. 7%

was predicted in the Atlantic Ocean for January–March

and July–September, and >6% in the Indian Ocean dur-

ing April–June. The lowest habitat reduction (loss of

2.5% and 3.1% in the Atlantic and Indian Oceans,

respectively) was predicted for October–December.

Conversely, in the first quarter of the year, our models

predicted an expansion of habitat suitability (2.7%) in

the Indian Ocean mostly within the Arabian Sea (cf.

Figs 3 and 4). In the Pacific, the projected increase in

temperature resulted in similar habitat suitability (<0.1)

within roughly the same region (no change predicted in

percentage of suitable habitat). However, a ‘corridor’ of

suitable habitat linking the western and eastern Pacific

Ocean was strengthened for all seasons (Fig. 4).

Discussion

Species distribution models can provide information on

suitable habitat for species occurrence (Guisan & Zim-

mermann, 2000), and coupling them to climate forecasts

provides a strong approximation of potential future

distributional shifts in response to warming (Hannah
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Fig. 3 Global predictions of current seasonal habitat suitability for whale sharks. Prediction maps generated from generalized linear

mixed-effects models fit with the sightings and effort data collected by tuna purse-seine fisheries. Where environmental inputs fell out-

side the environmental space used for the original statistical fit results are shown as ‘out of range’ in the map. ▲ indicates known

aggregation locations within the seasons represented in each map (symbol size proportional to relative size of aggregation). Areas

where some environmental predictors were not available (e.g., due to cloud cover) are shown in white (no result). To aid visualization,

solid line delineates areas where habitat suitability >0.1 was predicted.
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et al., 2002; Ara�ujo et al., 2005). Such information,

reflecting species’ susceptibility to anthropogenic

climate change, can assist in assessing species-specific

vulnerability to changes (Cort�es et al., 2010; Gallagher

et al., 2012). Access to a global dataset of whale shark

sightings provided a unique opportunity to model both

current and future habitat suitability over the entire

range of this pan-oceanic species. With sea surface

temperatures predicted to increase by at least 2 °C on

average by 2070 (under a no-climate-policy reference

scenario), our GLMM forecast both a (weak) pole-ward

shift and contraction of suitable area, with general loss
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Fig. 4 Predicted shift in global of whale sharks habitat suitability for 2070 under a no-climate-policy reference (no greenhouse gas

emissions) reference scenario. Solid line delineates areas where higher habitat suitability (>0.1) had been predicted under current envi-

ronmental conditions (Fig. 3) for visual assessment of the habitat contraction (reduction in the number of suitable 9-km cells of 5.0% in

January–March, 3.3% in April–June, 4.7% in July–September and 6.1% in October–December) and pole-ward shift (ca. 5 °N in January–

September in the Atlantic Ocean, and 3–8 °S in the Indian Ocean). ▲ indicates known aggregation locations within the seasons repre-

sented in each map, with symbol size proportional to relative size of aggregation (Sequeira et al., 2013b).

Table 3 Predicted change in habitat suitability to 2070.

Results are shown in percentage (%) of suitable 9-km grid cells

as per model resolution. Arrow direction indicates loss (down-

ward) or gain (upward) of suitable habitat

Ocean

January–

March April–June

July–

September

October–

December

Atlantic ↓ 7.22 ↓ 3.77 ↓ 7.35 ↓ 2.49

Indian ↑ 2.7 ↓ 6.32 ↓ 1.08 ↓ 3.06

Pacific no change no change no change no change

Global ↓ 1.4 ↓ 2.14 ↓ 1.7 ↓ 0.97
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of habitat (2.5–7.4%) occurring mainly in the warmer

equatorial region of the Atlantic and Indian Oceans

(Fig. 4). The exception was the Arabian Sea (northwest

Indian Ocean) becoming a more suitable area during

the first quarter of the year. The general contraction

observed is congruent with predictions for zooplankton

(Beaugrand et al., 2009), and the general trend (i.e.

pole-ward shift) follows predictions for many marine

species (Perry et al., 2005; Dulvy et al., 2008). Predicted

shifts in habitat suitability are expected in a warming

climate because metabolic rates of ectotherms increase

with ambient temperature (Makarieva et al., 2005),

thereby increasing food-intake requirements and poten-

tially affecting foraging distribution as prey availability

shifts. This range shift could be buffered in whale

sharks if they modified their diving behaviour to use

deeper, cooler waters more frequently as surface water

temperatures increase. However, despite the possible

oxygen limitations associated with time spent at depth

(Graham et al., 2006), prey availability would also be

scarce due to their expected shifts (Beaugrand et al.,

2009).

The current range of whale sharks is thought to be

predominantly between 30°N and 35°S, which gener-

ally accords with our current worldwide habitat suit-

ability predictions for the first and last quarters of the

year (Fig. 3). However, the environmental envelope

predicted during the second and third quarters of the

year shifts to latitudes as high as ca. 40°N – a latitude

where whale sharks have been reported more recently

(e.g., Portugal) (Rodrigues et al., 2012).

Within the Indian Ocean, our current predictions

agree with the distribution of observations in that basin

(Fig. 3). We predicted high suitability around India,

Maldives and Bangladesh, Djibouti, Kenya and Mozam-

bique during the first quarter of the year, (Rowat, 2007;

Sequeira et al., 2013b). In the second quarter, we

predicted high suitability at Ningaloo Reef (Australia),

the Mozambique Channel and Gujarat (India) (Pravin,

2000; Rowat, 2007). From July to September, suitability

was highest around the Mozambique Channel (Pierce

et al., 2010) and also Seychelles (Rowat, 2007), although

we lacked enough data to predict suitability in the

northern part of the Indian Ocean. Finally, we predicted

high suitability in the last quarter of the year along the

east coast of Africa, Bangladesh and Thailand, which

also reflects observations (Rowat, 2007).

In the western Pacific, the relatively low habitat suit-

ability is partially a function of the higher sighting (fish-

ing) effort there, which we offset in our models.

Regardless, predicted suitability was slightly higher in

the Philippines from April to June (Quiros, 2007), and

around Taiwan from July to September (Chang et al.,

1997) (Fig. 3). In addition, our models suggest the exis-

tence of a ‘corridor’ of suitable habitat, especially

between July and September, linking the eastern and

western Pacific. This longitudinal pattern was slightly

stronger in our scenario for 2070, suggesting its associa-

tion with warmer temperatures. Our model failed to

predict higher suitability in the Gulf of California and

the Galapagos where whale sharks occur year round

(C�ardenas-Torres et al., 2007) – additional data from the

eastern Pacific would probably help improve model

performance. However, if habitat in the eastern Pacific

remains suitable, this ‘corridor’ of environmental con-

ditions will possibly permit the connection of whale

shark populations across the Pacific. In terrestrial sys-

tems where anthropogenic habitat fragmentation is a

major threat to biodiversity (Fahrig, 2003), such ‘envi-

ronmentally suitable corridors’ are being used to assist

species adaptation to climate-driven changes by pro-

viding species the opportunity to move to new habitats

(Malhi et al., 2008; Vos et al., 2008).

On a worldwide scale, whale shark habitat suitability

was highest in the Atlantic Ocean, which is also the

region for which the highest-resolution and longest-

running data (since 1980) were available. Apart from

the Gulf of Mexico and the Azores, there is little other

information available for whale sharks in this region to

validate qualitatively our model results. In the Azores,

occurrences peak at the end of August and September

(fisheries data), and in the Gulf of Mexico, they peak in

the second quarter of the year (Heyman et al., 2001).

These are well predicted in our global model. However,

we did not predict high suitability during the following

quarter in the Gulf of Mexico where sightings are also

known to occur (Motta et al., 2010; De La Parra Venegas

et al., 2011). Other suitability congruent with fisheries

observations was found in the western coast of Africa

mostly between April and September. However, the

high suitability predicted in the southern Atlantic can-

not yet be validated due to a lack of observations. The

high suitability predicted off South Africa in the first

quarter of the year is congruent with the hypothesis

that whale sharks can cross from the Indian to the

Atlantic Ocean through the Cape of Good Hope (Seque-

ira et al., 2013b). We also predict suitable habitat in the

Mediterranean Sea in different quarters of the year

(Figs 3 and 4). Despite having water temperatures and

being located within the range generally considered

suitable for whale sharks (Compagno, 2001), a con-

firmed sighting has not yet been registered in the area

(Psomadakis et al., 2012).

The top-ranked model for all three oceans included

the same variables previously identified for the Indian

Ocean excluding standard deviation for sea surface

temperature (Sequeira et al., 2012, 2013a). However, the

interaction terms with ocean resulted in different pre-
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dictor importance among oceans. We found evidence

that sea surface temperature was an important predic-

tor both in the Atlantic and Indian, but had no discern-

ible effect in the Pacific Ocean. Despite the different

sample sizes from each ocean, the range of tempera-

tures for January to March in the Pacific (26.7–30.0 °C)
was narrowest when compared to other oceans

(25.2–31.2 °C in the Indian, and 19.4–28.3 °C in the

Atlantic; Fig. S1), and fell entirely within the range

reported for whale shark sightings (26.5–30.0 °C) (Se-

queira et al., 2012). Depth was an important predictor in

the Pacific where the depth range was greater, and in

the Atlantic, but not in the Indian Ocean. The relative

strength of this predictor among oceans might reflect

differences in other depth-associated predictors such as

availability of deep-water zooplankton layers available

for whale shark feeding (Wilson et al., 2006) not

accounted for in our models.

Whale shark occurrence is often associated with pro-

ductive areas (Taylor & Pearce, 1999), and chlorophyll

a, a proxy for phytoplankton concentration, has been

used successfully to predict occurrence (McKinney

et al., 2012). However, we found no evidence that chlo-

rophyll a contributed to our global suitability predic-

tions. The broad spatial scale of investigation might

contribute to reduce the importance of primary produc-

tion (cf. Bradshaw et al., 2004), especially in the open

ocean where variation in chlorophyll a concentration is

low. Another explanation might also be associated with

possible spatiotemporal lags between primary produc-

tion and secondary consumers (dilution and down-

stream effects) (Wafar et al., 1984; Bradshaw et al.,

2004), or simply with the need to use weekly averaged

values.

To forecast the potential influence of climate change

across the circumglobal range of whale sharks (Seque-

ira et al., 2013b), we derived suitability predictions in

areas where predictor values were within the environ-

mental envelope used to calibrate the model (i.e. we

only extrapolated our predictions geographically, not

environmentally). The correlative approach we used

here is sensible for interpolative prediction, while a

mechanistic approach is usually more appropriate for

extrapolation to novel environments (Kearney & Porter,

2009). To apply the latter approach, however, specific,

currently missing data on whale shark life-history traits

are required (Sequeira et al., 2013b). Correlative species

distribution models, being more flexible in terms of

data requirements, were our only option given the

available data.

The climate-induced impact on species occurrence is

usually investigated by coupling climate forecasts with

species distribution models (Hannah et al., 2002; Ara�ujo

et al., 2005). However, because this coupling adds extra

limitations, their results provide only a first approxima-

tion of possible changes. In the same way, our predic-

tions are intended only to provide a baseline for

temperature-dependent forecasts, as we assumed

stability of (i) whale shark environmental requirements

following niche conservationism (Romdal et al., 2013);

and (ii) human disturbances (greenhouse gas emissions

are commonly assumed to be stable in climate fore-

casts). For a more comprehensive study on the influ-

ence of temperature in the occurrence of this species,

more climate-change scenarios should be tested, and

other species distribution models could be generated to

assess variability in habitat suitability results, examine

error and determine confidence intervals (Thuiller,

2003; Ara�ujo & New, 2006). Likewise, if demographic

estimates of vital life history traits become available,

they could be integrated into species distribution mod-

els to provide direct estimates of future range move-

ment and extinction risk (Fordham et al., 2013a,b).

Herein, we focused our species distribution modelling

on a hypothesis-testing approach to assess the extent to

which the predictors were useful to define suitable

whale shark habitat. We therefore used the model-com-

parison approach only when forecasting changes to sea

surface temperature. To improve the predictions

derived from our species distribution models, more

sightings (ideally with a circumglobal coverage) should

also be used. Despite being the largest, most extensive

dataset derived from tuna fisheries logbooks, the data

we used covered only a portion of areas managed by

Regional Fisheries Management Organisations (New

Zealand Ministry for Primary Industries http://fs.fish.

govt.nz/Page.aspx?pk=103&tk=319). Therefore, there is

scope to develop our models based on data from other

areas, such as the eastern Pacific Ocean (managed by

the Inter-American Tropical Tuna Commission).

The opportunistic dataset we used contained only

whale shark presences. We addressed this drawback by

randomly generating pseudo-absences (Phillips et al.,

2009; Barbet-Massin et al., 2012) and repeating this pro-

cedure to account for any biases derived from pseudo-

absence selection. However, the dataset used was also

only relative to the sea surface, as environmental (and

sightings) data spanning subsurface dynamics are not

currently available for practical model development,

especially where the study area covers most of the glo-

bal ocean. Furthermore, the dataset included whale

shark sightings up to 2010. In recent years, whale

sharks have been observed outside the known 30°N–
35°S range (Turnbull & Randell, 2006; Rodrigues et al.,

2012), so it is possible that our results incorporate an

already modified range of suitable habitat.

Despite the current lack of alternatives to fisheries-

collected sightings in the open ocean (Jessup, 2003),
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combining remotely sensed data with opportunistically

recorded occurrences has proven useful for estimating

whale shark distributions (McKinney et al., 2012;

Sequeira et al., 2012). Indeed, most of our understand-

ing of whale shark ecology and biology hails from

opportunistically collected datasets by the ecotourism

(e.g., Wilson et al., 2001) or fishing industries near shore

at aggregation sites (e.g., McKinney et al., 2012). As

such, we should endeavour to analyse all available data-

sets to provide adequate information for conservation

of this pan-oceanic species and largest remaining fish.

Our results demonstrating that global whale shark

occurrence is strongly correlated with climatic condi-

tions and that their subpopulations are probably con-

nected globally (Sequeira et al., 2013b) provide a strong

incentive for revising current whale shark management

policies using a precautionary approach. Unfortu-

nately, existing management is mostly confined to tour-

ist locations, and except for the recent inclusion of this

species in the Convention on Migratory Species (CMS,

2010) and the Convention of Trade in Endangered Spe-

cies (CITES, appendix II; www.cites.org), there are no

global measures in place (Rowat & Brooks, 2012). Given

that existing management is still regionally focussed

and largely fails to take climate change into account,

the global conservation of whale sharks is not guaran-

teed.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Boxplots for major environmental predictors
within the area covered by the fisheries in each ocean.
Upper and lower limits indicate the maximum and mini-
mum values in each dataset.
Figure S2. Global sea surface temperature averages from
April to June. Top panel: current temperatures as seasonal
averages for 2002–2012 derived from MODIS-Aqua satellite.
Bottom panel: increase in sea surface temperatures pre-
dicted by 2070. The climate change scenario for 2070 was
obtained by adding the predicted increase calculated by an
ensemble forecast of climate change derived from five global
circulation models: CCSM-3, MRI-CGCM2.3.2, ECHAM5/
MPI-OM, MIROC3.2 (hires) and UKMO-HadCM3. These
GCM were chosen based on their global skill in predicting
recent SST temperatures (1981–2000). Model terminology
follows CMIP3 Multi-Model Dataset Archive naming con-
vention (www-pcmdi.llnl.gov/ipcc/about_ipcc.php), and
baseline observed temperatures used were from 1995 (AV-
HRR Pathfinder).
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