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The whale shark (Rhincodon typus, Smith, 1828) is a migratory species (classed as Vulnerable by the IUCN) with
genetic and circumstantial evidence for inter-ocean connectivity. Given this migratory behaviour, population-
wide occurrence trends can only be contextualized by examining the synchrony in occurrence patterns among
locations where they occur. We present a two-step modelling approach of whale shark spatial and temporal
probability of occurrence in the Atlantic and Pacific Oceans using generalized linear mixed-effects models. To
test the hypothesis that the probability of whale shark occurrence is asynchronous across oceans, as expected
if inter-ocean migration occurs, we used long-term datasets of whale shark sightings derived from tuna purse-
seine logbooks covering most of the central-east Atlantic (1980–2010) and western Pacific (2000–2010). We
predicted seasonal habitat suitability to produce maps in each area, and then evaluated the relative effect of
time (year) on the probability of occurrence to test whether it changed over the study period. We also applied
fast Fourier transforms to determine if any periodicity was apparent in whale shark occurrences in each ocean.
After partialling out the effects of seasonal patterns in spatial distribution and sampling effort, we found no
evidence for a temporal trend inwhale shark occurrence in the Atlantic, but there was aweak trend of increasing
probability of occurrence in the Pacific. The highest-ranked model for the latter included a spatial predictor
of occurrence along with fishing effort, a linear term for time, and a random temporal effect (year), explaining
15% of deviance in whale shark probability of occurrence. Fast Fourier transforms revealed a prominent 15.5-year
cycle in the Atlantic. The increase in the probability of occurrence in the Pacific is concurrent with a decrease
previously detected in the Indian Ocean. Cyclic patterns driven by migratory behaviour would better explain
temporal trends in whale shark occurrence at the oceanic scale. However, despite cycles partially explaining
observations of fewer sharks in some years, overall reported sighting rate has been decreasing. As a result, we
suggest that the current IUCN status of the species should be re-assessed, but more data are needed to examine
the flow of individuals across oceans and to identify possible reasons for asynchronous occurrences.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most of the readily measureable negative impacts of humans in
marine ecosystems result from direct exploitation (Pauly et al., 1998;
Worm et al., 2006) or related by-catch (Agardy, 2000; Hall et al.,
2000). Climate change is also beginning to affect marine ecosystems
(e.g., Sumaila et al., 2011) via temperature-driven range shifts and
alteration of ocean chemistry (Dulvy et al., 2008; Parmesan, 2006;
Perry et al., 2005; Wernberg et al., 2011). Reported declines in marine
species increasingly challenge the idea that extinctions in the oceans
are unlikely (Hendriks et al., 2006). Based mostly on a reduction in
observed landings from targeted fisheries (Fowler et al., 2005), whale

sharks are currently listed as Vulnerable (i.e., facing a high risk of
extinction in the wild) by the IUCN (www.iucnredlist.org).

Whale sharks (Rhincodon typus, Smith 1828) travel thousands of
kilometres pelagically between near-shore aggregation sites (e.g., Rowat
and Gore, 2007), and their sub-populations are assumed to be connected
across the world's oceans (Castro et al., 2007; Sequeira et al., in press).
This circumglobal migration raises concerns about the adequacy of
current management measures (Rowat, 2007). These generally focus
on confined areas of aggregation where tourism is locally important
(Pierce et al., 2010; Quiros, 2007), and might therefore largely neglect
negative impacts occurring elsewhere (Bradshaw, 2007). Whale
shark-based eco-tourism has been developed based on the anticipation
that individuals from local sub-populations return to the same location
each year at approximately the same time (Taylor, 1996); however,
evidence for declining relative abundance has been reported at some
of these locations (Bradshaw et al., 2008; Theberge and Dearden,
2006). There is also quantitative support for a slight reduction in the
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probability of occurrence in the Indian Ocean during the last decade
(Sequeira et al., 2013a).

Whale sharks are potentially affected by a range of human activities,
including exploitation through direct commercial fisheries (the last
fishing ban occurred in Taiwan only after 2007) (COA, 2007; but see Li
et al., 2012), poaching (Riley et al., 2009), by-catch (Romanov, 2002),
and habitat disturbance via tourism (Heyman et al., 2010) and shipping
(Speed et al., 2008). With temperature being an important predictor of
whale shark distribution (Sequeira et al., 2012) and local relative
abundance (Sleeman et al., 2010a), anthropogenic climate disruption
will possibly affect this species occurrence patterns (Sequeira et al., in
press).

Changes in the abundance of whale sharks might be confounded
by inter-decadal cycles in relative abundance (Sequeira et al., 2013a)
possibly associated with broad-scale migration patterns. Because this
species is highly mobile and populations are connected across oceans at
least at the generational scale (Castro et al., 2007; Schmidt et al., 2009),
temporal trends still can only be inferred by a combination of site-
specific time series of relative abundance (e.g., sightings per unit effort)
with inter-site comparisons of occurrence synchronywithin ocean basins.
Although this comparison is crucial to the understanding of temporal
trends inwhale shark occurrence, no study has so far quantified temporal
sighting probability among known aggregation locationswithin the same
ocean (as suggested by Sequeira et al., 2013a, in press).

Temporal trends in species occurrence are seldom dissociated from
spatial processes. Although statistical models have been mostly used
to assess and predict the spatial distribution of species (Guisan and
Thuiller, 2005; Guisan and Zimmermann, 2000; Hirzel et al., 2002;
Phillips et al., 2009) based on the ecological niche (Hutchison, 1957),
they can also be used to assess temporal trends (Gotelli et al., 2010).
For example, species distribution models have indeed been used to
estimate habitat suitability for highly migratory marine species (Elith
and Leathwick, 2009; Oviedo and Solís, 2008; Praca and Gannier,
2007), aswell as estimate their temporal trends (Sequeira et al., 2013a).

Access to fisheries' logbook data compiled by tuna purse-seiners from
theAtlantic andPacificOceans gave us the opportunity to estimate broad-
scale trends inwhale shark occurrence to complement (and compare) the
assessmentmade previously for the IndianOcean (Sequeira et al., 2013a).
Here we: (1) predict whale shark habitat suitability within the areas
covered by the tuna fisheries in the Atlantic and Pacific, (2) test the
hypothesis of temporal asynchrony in the probability of occurrence, and
(3) assess possible cyclic patterns in occurrence. Our main objective is
to assess the temporal variability in occurrence probability across most
of the species' knowngeographical range by comparing their probabilities
of occurrence in different oceans. We conclude with a discussion of our
results with respect to the species' global threat status.

2. Material and methods

With the main objective to assess temporal trends in whale shark
occurrence in the Atlantic and Pacific Oceans, and compare them with
the results obtained previously for the Indian Ocean (Sequeira et al.,
2012, 2013a), the models we develop here follow a similar approach.
First, we developed habitat suitability models and used the resulting
predictions as part of the input data in our temporal models of
occurrence. Below we describe the biological and environmental data,
the modelling methods including how we accounted for pitfalls in the
opportunistically collected dataset (presence-only data and sampling
bias), and the application of fast Fourier transforms to test for cyclic
patterns in the probability of occurrence.

2.1. Whale shark and environmental data

We used whale shark occurrence data from the Atlantic and Pacific
Oceans recorded in the logbooks of tuna purse-seiners. Because tuna
and whale shark occurrence is often associated with these fisheries

(possibly because they forage on similar prey), nets deployed by tuna
fishers frequently encircle (and subsequently release) whale sharks
as well (Matsunaga et al., 2003). Hereafter, we use the term ‘sightings’
to describe logbook records of these whale shark-associated net sets.
The datasets made available by the Institut de Recherche pour le
Développement (France) and the Secretariat of the Pacific Community
comprise most of the central area of the Atlantic (21°N–15°S and
34°W–14°E) and central western Pacific (15°N–15°S and 130°E–
150°W) (Fig. 1). They include the date of sightings (month and year),
longitude and latitude (0.01-° precision), and information on sampling
effort (number of days spent fishing per month) in each 1-° grid cell
in the Atlantic, and 5-° grid cell in the Pacific (Fig. 1). No information
on individual vessel, vessel nationality or trip units was available. The
data spanned 1980 to 2010 in the Atlantic (total of 18,277 records
provided by the French purse-seiners), and 2000 to 2010 in thewestern
Pacific (total of 2272 records provided by only part of the fleets
registered with the Secretariat of the Pacific Community, but these are
representative of the fisheries in the area). To compare the possible
synchrony of occurrence patterns within the Atlantic and Pacific with
previous results obtained for the Indian Ocean (Sequeira et al., 2013a),
and due to the generally low number of sightings in other seasons
(Fig. S1), we used data for the months of April to June only. A total of
1018 and 167 sightings were reported in the Atlantic and Pacific oceans,
respectively, during the months considered.

We assembled environmental data on daytime sea surface tem-
perature (SST in °C) and chlorophyll a (Chl a in mg m−3) at a 9-km
resolution derived from the Advanced Very High Resolution Radiometer
(AVHRR) PathFinder version 5.0 and Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) satellites, respectively. We used ArcToolBox functions
(ArcGIS 9.3.1™ automated with Python scripts) to calculate mean and
standard deviation of SST and mean Chl a per grid cell for all weekly
composites between April and June for the time period of each ocean
dataset. We also derived depth (m), slope (°) and distance to shore
(km; using the Near tool in ArcGIS 9.3.1™ on a equidistant cylindrical
coordinate system) from the General Bathymetry Chart of the Oceans
(GEBCO, 2003).We then collated the full dataset at a common resolution
of 9 km including six predictors: mean depth, slope, distance to shore,
mean SST, SST standard deviation and mean Chl a. We did not include
standard deviation of Chl a because in the models we previously
developed for the Indian Ocean, this variable was excluded to avoid
including highly correlated variables (Sequeira et al., 2012).

2.2. Models

We developed the modelling approach in two steps to (1) compare
the ability of different combinations of the environmental variables to
predict whale shark habitat suitability, and (2) assess evidence for a
temporal trend in whale shark occurrence in each ocean using the
spatial predictions of habitat suitability from step one. In both steps,
we applied generalized linear mixed-effects models (GLMM) with a
binomial error distribution and a logit link function to our presence-
only data, and generated pseudo-absences for binomial estimation.

The process of generating pseudo-absences differed in eachmodelling
step. In the first (spatial) step, we randomly generated 10 pseudo-
absences per presence based on a spatially random distribution within
the area covered by the fisheries (excluding all presence cells). In the
second (spatio-temporal) step, we generated 100 pseudo-absences per
presence based on both temporally and spatially random distributions,
that is, randomly choosing a date within the temporal coverage of each
dataset and then randomly assigning it to a grid cell within the area
covered by the fisheries (for each ocean). In both steps, we generated
the spatially random distributions with the srswor function (simple
random sampling without replacement) from the {sampling} package
in the R programming language (R Development Core Team, 2012).
For the temporally random pseudo-absence distribution, we randomly
selected a date within the temporal coverage of each dataset (April to
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June only) by using the srswr function (simple random sampling with
replacement) from the same package in R. To assess the influence of the
date and location associated with the selected pseudo-absences, we
generated each set of pseudo-absences 100 times prior to incorporating
them into the spatial models, and only 10 times for the temporal models
(to keep computing time manageable).

In the first spatial step, we included as predictors the quadratic
termsof SST anddepth to account for a possibly higher suitabilitywithin
a range of these variables (non-linear response). Here we used the poly
function (with degree 2) from the {stats} package in R. We also included
a code for each 1-° grid cell as a spatial random effect to reduce spatial
autocorrelation (Sequeira et al., 2013a). To account for the sampling
bias associated with effort (i.e., related to the expectation of more
whale shark sightings where fishing effort was higher), we included
effort as an offset in all models.

In the second spatio-temporal step, to determine the probability of
whale shark occurrence we used as predictors the spatial habitat
suitability predicted in step 1, a zero-centred effort term (inter-annual
variation around themean not accounted forwithin the spatial predictor)
(Sequeira et al., 2013a) and time, both as a fixed (time) and random
effects (year) to ensure that the random structure contained only
information that could not have been modelled with fixed effects
(following Zuur et al., 2009). To account for a possible parabolic-like
relationship between the probability of occurrence and time, we also
added the quadratic term for time using the second-order poly function.
Estimated probabilities of occurrence are based on the prevalence
assumed by the presence/pseudo-absence data used (i.e., 0.01), assuming
an even probability of detection across the dataset.

A generic way to write the logit-link GLMM is:

logit Presenceð Þ ¼ α þ βXi þ γiZi þ �i þ log fishing effortð Þ

where Presence is the expectedmean probability of sighting occurrence,
X and Z represent the fixed and random effects (and their coefficients β

and γ), respectively (and as specified above), α is the intercept, and i
corresponds to the number of observations among grid cells in the
spatial models, and years in the temporal models.

We compared themodels' relative strength of evidence byweighting
each model's Akaike's information criterion corrected for small sample
sizes (wAICc) (Burnham and Anderson, 2004), and calculating the
percentage of deviance explained (%De) for each model as an index of
goodness-of-fit. We calculated the 10-fold cross-validation error for
the model with highest wAICc support and assessed the model's
predictive power using Cohen's κ statistic (Cohen, 1960). To build the
habitat suitability maps (as a result of the spatial modelling step), we
used the multi-model weighted average (based on its weight of
evidence; wAICc) to define the habitat suitability predictor in the
spatio-temporal models. We also calculated the weight of evidence for
each predictor used in the spatio-temporal models by summing the
wAICc over all models in which each predictor appeared. This identifies
the predictor with the highest predictive accuracy with respect to the
response.

2.3. Fast Fourier transforms

Fast Fourier transforms decompose signals from time series into the
sum of sinusoidal curves with different frequencies (Platt and Denman,
1975). To analyse possible cyclic variation in whale shark occurrences,
we applied the fast Fourier transform function (FFT; following Moler,
2004) to the sighting time series after correcting for effort bias (i.e., by
standardizing sightings per unit effort [SPUE] with an effort unit = 1
fishing day). We used MatLab version 7.12.0.635 (R2011a) (The
Mathworks Inc., Natick, MA), and interpreted the results of the FFT by
plotting the periodogram for the power of the signal (square of the
absolute fast Fourier transform) against the frequency (inverse of
time). A cycle is then defined by identifying the frequency with the
strongest signal (power).

Fig. 1.Whale shark (Rhincodon typus Smith 1828) datasets recorded by tuna purse-seiners including location of net-sets in the Atlantic (1980–2010) (left) and the Pacific (2000–2010)
(right). Top panel: area covered by the fisheries (grey), and location of whale shark sightings (blue dots). A total of 1030 sightingswere recorded in the Atlantic (A), and 167 in the Pacific
Ocean (between April and June) (B). Bottom panel: number of fishing days (effort) with a resolution of 1° for the Atlantic (C) and 5° for the Pacific Ocean (D).
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To examine cyclic trends apart from the known annual cycles
(i.e., number of sightings is usually higher in particular seasons each
year), we started by using data only for the season under consideration
(Apr–Jun), and defining frequency as year. As an alternative test to
include all sighting data available (all months), and therefore increase
the length of the vector used in the function, we also ran FFT for the
sightings per monthly effort (defining frequency as month). In this
test, we used a running average including the six months before and
after each month to eliminate the known annual periodicity. The
strength of each resulting cycle (periodicity) is given by the power of
the corresponding frequency in the periodogram.

3. Results

3.1. Spatial patterns

In the Atlantic Ocean, whale shark sightings occurred mostly off
Gabon in equatorial eastern Africa, and at around 10°N between Senegal
and Sierra Leone — these areas comprise most of the fishing effort
(Fig. 1). Likewise in the western Pacific, more sightings were recorded
within the area of highest fishing effort, even if sightings were spread
out across the sampled area (Fig. 1).

Our spatial models (step 1) revealed higher habitat suitability
mostly corresponding to the areas where more whale sharks were
spotted in the Atlantic, and to the northeast of Indonesia/Papua New
Guinea in thewestern Pacific also covering the areawithmore sightings
(Figs. 1 and 2). Themodel with highest statistical support was the same
for both oceans in step 1 (wAICc =0.83 and 0.33 in the Atlantic and
Pacific, respectively), and included all predictors except chlorophyll a.
This model explained 50% of deviance in the Atlantic and only ~6% in
the Pacific (Table 1). Results for the Pacific highlight the possibility
that other important factors, not accounted for in our models, might
affect whale shark occurrence in the area. During the months of April
to June, habitat was more suitable in the Pacific (habitat suitability up
to 0.7) than in the Atlantic (0.2) (Fig. 2); however, κ was higher in the
Atlantic (κ ~ 0.5 compared to ~0.3 in the Pacific) (Table 1). According
to Cohen (1960), the κ we obtained reflects a good performance for
the models applied to the Atlantic and a poor performance for the
models applied to the Pacific (possibly due to the low number of
sightings in the latter area). The mean prediction error calculated
through the 10-fold cross validation (CVe) was low in both oceans
(b0.1).

3.2. Temporal trends

The total number of whale sharks sighted annually in the Atlantic
varied from 0 to 137 (Fig. 3A) between April and June. Sightings peaked
(~120 individuals) in 1995, even though total fishing effort (sum of

fishing days spent fishing in all 1-° grid cells) remained relatively
constant between 1985 and 2000 at about 6000 fishing days (5.8 ±
2.6 × 103; Fig. 3C). During this peak, the number of occurrences was
similar to the one recorded in the early 1980s (137 sightings) when
effort was close to 10,000 days (Fig. 3). Between 2000 and 2010, effort
dropped to ~2000 days in the Atlantic. In contrast, fishing effort
increased steadily in the Pacific from 2000 (Fig. 3C). The number of
sightings in the Pacific also increased with time, from around 10
sightings per year in the early 2000s to a maximum of 35 in 2010
(Fig. 3A).

The spatio-temporal model with highest statistical support differed
between oceans (Table 2). In the Atlantic, the top-ranked model
(wAICc = 0.633) included as predictors the habitat suitability derived
from step 1, effort and year (as a random intercept). The models
including the linear and quadratic terms for time resulted in similar
log-likelihood (Table 2), and explained similar percentage of deviance
(51.69 and 51.70%, respectively), but received lower support from
wAICc (0.234 and 0.133, respectively). In the Pacific, the highest-
ranked model (wAICc =0.472) also included the time predictor,
although it only explained b15% of the deviance. The partial effect of
time on the probability of whale shark occurrence during the months
of April to June in the western Pacific increased from 0.003 to 0.012

Fig. 2. Predicted habitat suitability of whale sharks (Rhincodon typus Smith 1828) in the Atlantic (A) and Pacific (B) Oceans during themonths of April to June. Values for habitat suitability
vary from 0 (low) to 0.2 and 0.7 (high) in the Atlantic and Pacific, respectively.

Table 1
Summary of spatial generalized linear models (step 1) relating the probability of whale
shark (Rhincodon typus Smith 1828) occurrence to ocean properties. Ocean properties –
slope, depth, depth2 and distance to shore (shore) – are referred to together as ‘physical
variables’ (physvar). Mean sea surface temperature (mSST) and its quadratic term (SST2),
and sea surface temperature standard deviation are referred to together as ‘SST
variables’ (SSTvar). Mean chlorophyll a (mChl a) is the values measured in the Atlantic
and west Pacific Oceans during April to June. Also shown are biased-corrected model
evidence based on weights of Akaike's information criterion corrected for small sample
sizes (wAICc; only values≥ 0.001 shown), percentage of deviance explained (%De), and
the Cohen's Kappa statistics (κ; only values≥ 0.1 shown) for each model performing
better than the null model (including only an offset for effort and the spatial random
effect) in each ocean.

Model Atlantic Ocean Pacific Ocean

wAICc %De κ wAICc %De κ

physvar + SSTvar 0.83 50.4 0.7 ± 0.05 0.33 6.4 0.3 ± 0.08
physvar +mSST + SST2 0.17 50.3 0.6 ± 0.06 0.33 6.1 0.3 ± 0.08
mSST + SST2 +mChl a – – – 0.28 5.4 0.3 ± 0.08
physvar +mChl a – 49.5 0.2 ± 0.02 0.03 5.4 0.3 ± 0.08
mChl a – 47.0 – 0.01 4.3 0.2 ± 0.08
mSST + SST2 – 47.4 0.1 ± 0.01 0.004 4.3 0.3 ± 0.07
physvar – 48.3 0.4 ± 0.05 0.004 4.7 0.3 ± 0.08
SSTvar – 47.1 0.1 ± 0.01 0.003 4.4 0.3 ± 0.08
Shore – – – 0.001 3.8 0.2 ± 0.07
Depth – – – 0.001 3.6 0.2 ± 0.08
Depth2 – 49.5 – – – –

Slope – 47.3 – – – –

Bold italics represent the best ranked model for both oceans.
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between 2000 and 2010 (Fig. 4B). As for predictors, habitat suitability
and effort received the highest weight (1 and 0.999, respectively) in
the Atlantic Ocean, while in the Pacific we found the highest weight

for effort (weight of evidence = 1) followed by the linear term for
time (time: 0.953) (Table 3).

3.3. Cyclicity

The fast Fourier transform applied to the time series of sightings per
unit effort in the Atlantic (Fig. 5A, top) revealed a prominent peak at
15 years (Fig. 5A, centre), both with yearly and monthly frequencies.
This periodicity also had the strongest signal when plotting the possible
cycles present in the dataset (Fig. 5A, bottom); however, its relative
magnitude was similar to other possible cycles present in the time
series. In the Pacific, the power of any possible cycle was consistently
low (b10−3, Fig. 5B).

4. Discussion

Our predictions of habitat suitability for whale sharks and the
spatially controlled temporal variation in occurrence are the first for
this species both in the Atlantic and Pacific Oceans, and from the only
datasets currently available at broad spatial scales. We found no
evidence for linear or quadratic temporal trends in the Atlantic
(although there was a suggestion of a ~15-year cycle), and there was
a weak linear increase in the Pacific occurrence probability since 2000.
This increase, from 0.003 to 0.012, indicates that the model predicts a
four-fold increase of seeing a shark in the Pacific between 2000 and
2010 based on an average sighting (fishing) effort. The latter result
contrasts with the decreasing trend detected in the Indian Ocean during
the last decade (Sequeira et al., 2013a). If the temporal patterns we
found reflect real patterns in whale shark occurrence, they show
opposing trends in two adjoined ocean basins (Indian and Pacific).
Moreover, the periodicity results for the Atlantic Ocean where the
dataset available is the longest (30 years), even though weak, accord
with the inter-decadal trend previously suggested for whale sharks in
the Indian Ocean (Sequeira et al., 2013a).

Given these opposing trends for the Indian and Pacific Oceans, the
evidence for inter-decadal occurrences (Sequeira et al., 2013a), the
low genetic differentiation of world whale shark populations (Castro
et al., 2007; Schmidt et al., 2009), and the implicit notion that whale
sharks must travel among oceans at least occasionally (Hueter et al.,
2008; Rowat and Gore, 2007), we hypothesize that occurrence
might be asynchronously cyclical across oceans. Such a pattern would
be consistent with the inter-ocean migratory behaviour we have
previously hypothesized (Sequeira et al., in press). Similar distributional
shifts, promoting asynchrony in occurrences, have also been suggested
for other filter-feeding sharks (basking sharks Cetorhinus maximus)
between the west coast of Ireland and the Norwegian Sea (Sims and
Reid, 2002) — these were associated with spatial changes in foraging
conditions. If whale sharks migrate between oceans (Sequeira et al., in
press), as has been reported for other planktivores such as sea turtles
(Luschi et al., 2006), such a cyclic pattern would explain both the
interannual variation in sightings at the ocean-basin scale and the
asynchrony in their occurrences in the Indian and Pacific Oceans.

Fig. 3. Yearly variation in (A) number of whale sharks sighted, (B) relative whale shark
occurrences (i.e., divided by maximum number of sightings in each ocean), and (C) days
spent fishing. During the months of April to June in the Atlantic (1-° resolution), Indian
(5-° resolution) (from Sequeira et al., 2013a; included here for comparison only), and
western Pacific (5-° resolution) Oceans.

Table 2
Summary of the spatio-temporal generalized linearmixed-effectsmodels (step 2) relatingprobability ofwhale shark occurrence in theAtlantic and PacificOceans (fromApril to June) to: a
spatial predictor derived from the spatial distribution models (Hsuit), effort (temporal variation in fishing effort), time (years), and a random effect for year. Shown for eachmodel are the
number of parameters (k), log-likelihood (LL), weights of Akaike's information criterion corrected for small sample sizes (wAICc) and the percentage of deviance explained (%De). Top-
ranked models in each step are in bold and models are ordered by %De (according to which ranking was consistent between oceans). Models with wAICc b 0.05 are not shown.

Model k Atlantic Ocean Pacific Ocean

LL wAICc %De LL wAICc %De

Hsuit + effort + time+ time2 + (1| year) 7 −2790.90 0.133 51.70 −753.55 0.247 14.99
Hsuit + effort + time+ (1| year) 6 −2791.34 0.234 51.69 −753.91 0.472 14.95
Effort + time + time2 + (1| year) 6 – – – −755.67 0.081 14.75
Effort + time + (1| year) 5 – – – −756.07 0.148 14.70
Hsuit + effort + (1| year) 5 −2791.34 0.633 51.69 – – –
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Moreover, such large-group and multi-year migrations would still
be consistent with the observed low genetic differentiation among
populations (Castro et al., 2007; Schmidt et al., 2009). Migrations
could be partly associated with changes in environmental conditions
(Sleeman et al., 2010b; Wilson et al., 2001), or with sex/age or
reproduction-related behaviour (Ramírez-Macías et al., 2007; Sequeira
et al., in press). Reproduction-associated multi-year cycles have been
observed in anadromous fish that shift habitat use for a few years while
maturing (freshwater to saltwater), and return to hatching habitats for
spawning (e.g., sockeye salmon Oncorhynchus nerka) (Dingle, 1996).
Multi-year cycles have also been reported for fish catches in the western
Indian Ocean (Jury et al., 2010), and for decadally cyclic cetacean
strandings (Evans et al., 2005).

The quasi-15-year cycle suggested for the Atlantic Ocean occurrence
time series corresponds to half of the dataset's temporal span. This cycle
is therefore close to the highest frequency that can be detected by the
fast Fourier method (Moler, 2004). Analogous studies reporting decadal
cycles in marine species have used much longer datasets (Evans et al.,
2005; Jury et al., 2010). Obtaining a longer time series for whale sharks
in the Atlantic is required to reveal whether the 15-year cycle persists,
and this should be reassessed as more data become available. The
temporal extent of the western Pacific dataset spanned only a third of
that of the Atlantic dataset, which potentially explains why no peaks
were detected (power b 10−3; Fig. 5).

The results from the spatial models (step 1) agreed well with the
data in the Atlantic (κ ~ 0.5) where higher-resolution data (1-° grid
cell) were available. Here, we predicted higher habitat suitabilitymostly
close to shore around Gabon, Congo and Equatorial Guinea, and
between Côte d'Ivoire and Mauritania. Due to the paucity of studies on
whale sharks in the Atlantic (excluding the Gulf of Mexico and
Caribbean Sea not covered by our data), we could not validate these

results. However, this high predicted suitability matches the areas
where higher zooplankton biomass is expected (Strömberg et al.,
2009), and higher relative foraging success has been observed in
the subequatorial region between 5° and 10° N for other giant
zooplanktivores such as the leatherback turtle (Dermochelys coriacea)
(Fossette et al., 2010). We also predicted higher suitability farther
from shore around the Equator and between 15 and 20°W (Fig. 2, left
panel). As an anecdotal validation, whale sharks occur close to this
area in the Saint Peter Saint Paul archipelago, peaking in occurrence at
the end of June (Hazin et al., 2008).

In the western Pacific, the predictions show mostly suitable habitat
within the area covered by the fisheries, but despite the higher
suitability (up to 0.7), model accuracy was poor (κ ~ 0.3). This low
accuracy, together with the low percentage of deviance explained
(~6%) might also affect the performance of the temporal models for
the same area. For this reason, we advise caution when interpreting
the results for the Pacific Ocean. Possible reasons for the poor
performance include low-resolution data or unmeasured environmental
covariates that could be better predictors, such as current or wind
conditions (Wilson et al., 2001). During the season we considered
(April to June), the number of sightings in the western Pacific (167)
was about 6 times lower than in the Atlantic (1018; Fig. 1), which
reduces the performance of the western Pacific model. Because the
data available for this ocean represent only partial coverage, access to
the full dataset (giving more sightings in this season) would likely
improve model performance by refining the distinction between
presence and absence locations. Nevertheless, the available data are
representative of the total fisheries in the area, thus application of
the same models to seasons when more sightings are recorded
might improve results. However, to compare synchronous seasonal
occurrences in the three major oceans, data covering the months of
April to June were required (following from Sequeira et al., 2012). Due
to the lack of independent studies reporting whale shark occurrence
off Indonesia and Papua New Guinea, we could not externally validate
this model's predictions.

The opportunistically collected datasets on which we relied had
inherent complications and assumptions. For example, an underlying
assumption of ourmodels is that failure to report awhale shark presence
(whether or not a shark was detected or reported) is evenly distributed
across the sampling area and period. Access to higher-resolution data
would likely improve the results (as exemplified by the Atlantic Ocean
models), and could be achieved by better collaboration between
researchers and fisheries-management organisations. Commercial-in-
confidence restrictions on access to fisheries data (especially sensitive

Fig. 4. Partial effect of time on the probability of whale shark presence during the months of April to June in (A) the western Indian Ocean (from Sequeira et al., 2013a; included here for
comparison only), and (B) thewestern Pacific Ocean according to themodel with highest information-theoretic support: Presence ~ habitat suitability+ effort+ time+(1| year) (Table 2).
Dashed lines indicate 95 % confidence intervals. Results are shown for 1991 to 2007 for the Indian Ocean and 2000 to 2010 for the Pacific Ocean.

Table 3
Estimated weight of evidence for each temporal predictor used in the generalized linear
mixed-effects models: Hsuit: predicted habitat suitability derived from the spatial
distribution models, effort: temporal variation in fishing effort, and a linear (time) and
quadratic (time2) term in years.

Ocean Atlantic Pacific

Hsuit 1 0.761
Effort 0.999 1
Time 0.367 0.953
Time2 0.133 0.328
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data such as fish catch) delay scientific research from providing more
accurate models on fisheries impacts. Such collaborations could also
lead to better data collection using the available resources. However,
while data collected by fisheriesmight not be as precise as those derived
from scientifically designed surveys, they are still essential sources of
information given the logistic challenges of surveyingwidely distributed
species over their entire range.

The generation of pseudo-absences was necessary to allow for
the binomial estimation in the models. We previously assessed the
differences associated with the method to generate pseudo-absences
using similar datasets (Sequeira et al., 2012), and found that model
performance was not reduced by using random pseudo-absence
selection (see also Barbet-Massin et al., 2012). Barbet-Massin et al.
(2012) also reported that model accuracy increases until the presence
to pseudo-absence ratio (i.e., prevalence) reaches 0.1, and remains
constant for lower ratios. Prevalence was 0.1 in our spatial assessment,
and 0.01 in the temporal assessment (to allow enough points for
the spatially explicit temporal analysis); therefore, we do not expect
the presences:pseudo-absences ratio to have affected our prediction
accuracy. Another important aspect is that both sightings and en-
vironmental variables correspond mostly to the ocean surface layer.
Three-dimensional data at an adequate resolution for regional analyses
are currently not available. Even though whale sharks spend most
time at the surface (e.g., Rowat et al., 2007), they also dive frequently
and so assessing how they explore their vertical habitat would be an
important extension to our predictions. Other predictors such as
currents could potentially also add some explanatory power as
suggested by Sequeira et al. (2013c) when referring to whale shark
occurrence in the Azores, Portugal.

Despite these limitations, we have demonstrated that whale shark
occurrence is possibly asynchronously cyclical among ocean basins,
which supports our notion of inter-ocean migration (Sequeira et al., in
press). Despite this cyclicity possibly explaining declines observed in
some years and locations, the total number of sightings has declined
in the last decade (b50 per year in all oceans; Figs. 3a and S1). In the
1990s there were a total of about 500 sightings in the Atlantic Ocean
(study months), while in the early 2000s, there were only around 150
(Fig. S1). We observed a similar pattern in the Indian Ocean (Sequeira
et al., 2013a), with 600 sightings reported in the 1990s and ~200 in

following years (Figs. 3a and S1). The reduced sightings in the last
decade agree with the recent accounts of declines from near-shore
aggregations (Bradshaw et al., 2008). These results provide for the
first time quantitative evidence that whale shark numbers are declining
based on direct observations at a scale that largely encompasses the
species' circumglobal range (Colman, 1997).

Whale sharks are currently listed as Vulnerable based on the Red List
criteria A2bd+ 3d (Norman, 2005). Criterion A2bd denotes a
continuing, not understood or not reversible reduction of ≥30% in
population size over the last 10 years or three generations (whichever
is the longer) based on “an index of abundance appropriate to the
taxon” and “actual or potential levels of exploitation”. Criterion 3d
denotes a projected or suspected ≥30% reduction to be met within
the next 10 years or three generations (whichever is the longer, up to
a maximum of 100 years) based on “actual or potential levels of
exploitation”. Targeted whale shark fisheries were mostly banned over
10 years ago (Sequeira et al., in press) (except in Taiwan, where the
ban was imposed only after 2007) (COA, 2007) and according to the
tuna fisheries datasets (Fig. S1), peak-month sightings have declined
by about 50% in the last decade both in the Atlantic and Indian Oceans
(there are no data available prior to 2000 for the Pacific Ocean).
Considering the species' longevity of 60 to 100 years (Pauly, 2002),
10 years might correspond to only 10–20% of a single generation
(Bradshaw et al., 2007). The observed decline in sightings is also
occurring simultaneously in a large part of the species' known
geographical range. This evidence, combined with their late age at
maturity, and our poor understanding of the species' reproductive
output, suggests that it is plausible that whale sharks are facing a higher
risk of extinction than their current threat status indicates. Further,
most whale sharks observed in aggregations worldwide are immature
(Graham and Roberts, 2007; Heyman et al., 2001; Rowat et al., 2011;
Wilson et al., 2001), and there is evidence that the average size of sharks
is declining (Bradshaw et al., 2008). This mounting body of evidence
calls for a re-assessment of their current status in the IUCN Red List.
Adequate conservation measures are required to ensure the long term
conservation of the species, as previously observed for sea turtles
(Broderick et al., 2006; Hays, 2004).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jembe.2013.10.019.

Fig. 5.Whale shark sightings per unit effort during the months of April to June in A) the Atlantic (1981–2010) and B) Pacific (2000–2010). Top: variation in sightings per unit effort with
time; centre: strongest frequency observed; and bottom: cyclic description in whale shark sightings per unit effort as result of the fast Fourier transforms.
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