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Despite potentially considerable advantages over traditional sampling techniques, image-derived
indices of habitat complexity have rarely been used to predict patterns in marine biodiversity.
Advantages include increased speed and coverage of sampling, avoidance of destructive sampling, and
substantially reduced processing time compared to traditional taxonomic approaches, thus providing a
starting point for more detailed analysis if warranted. In this study, we test the idea that the mean
information gain (MIG) and mean mutual information (MMI), two indices of image heterogeneity that

'é?e/ ‘r"l’gggs: we derived from photographs of marine benthic assemblages, represent good preliminary predictors of
Richness biodiversity patterns for 133 benthic invertebrate and algal taxa on jetty pylons in Gulf St Vincent, South

Australia. Both MIG and MMI were spatially structured, with evidence of among-site differences that
were also evident in the benthic data. When combined with information on the spatial structure within
the dataset (site and depth), MIG and MMI explained ~35% of deviance in invertebrate species richness,
~43% in Shannon’s evenness and up to 50% of dissimilarity in species composition. This explanatory
power is of a similar magnitude to many other, less readily available, surrogate measures of biodiversity.
These results corroborate the idea that indices of image heterogeneity can provide useful and cost-
effective complements to traditional methods used for describing (or predicting) marine epibiota
biodiversity patterns. This approach can be applied to many case studies for which photographic data are
available, and has the potential to result in substantial time and cost savings.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of being able to do rapid assessments of marine
biodiversity cannot be understated. Today only a little over 2% of
the oceans fall under some sort of protection (Moffitt et al., 2015).
An inherent assumption of marine conservation planning is that
maximising the representation of species diversity begets higher
ecosystem resilience (McCann, 2000; Ives and Carpenter, 2007;
Moilanen et al., 2009), because higher species richness and greater
niche partitioning lead to weaker biotic interactions, increased
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species co-existence and greater functional redundancy (Walker,
1992; Shurin, 2007; Thibaut et al., 2012). Moreover, species
richness and niche partitioning tend to be higher in more complex
environments (Hutchinson, 1957), leading to the idea that an
environment’s ‘complexity’ - measured indirectly as some index of
diversity, or more directly based on measures of habitat
heterogeneity — can be used as a proxy to predict an ecosystem'’s
resilience to perturbation and environmental change (McCann,
2000; Ives and Carpenter, 2007).

Compared to sampling in terrestrial ecosystems, the relative
difficulty, high cost and intensity of sampling marine biota
sufficiently to answer ecological and conservation questions
(Richardson and Poloczanska, 2008) demands the development
of more efficient and meaningful biodiversity approaches and
proxies (Mellin et al., 2011, 2012). Combined with difficulties in
species identification (including the increasing rarity of specialist
taxonomists - Hopkins and Freckleton, 2002), the large number
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of undescribed marine species, and the variable success of using
‘surrogates’ (Rodrigues and Brooks, 2007) to infer marine
biodiversity distributions (Poore and Wilson, 1993; Ward et al.,
1999; Beger et al., 2003; Mellin et al., 2011), simple, efficient and
cost-effective methods for assessing plot-based biodiversity are
surprisingly rare in marine science.

One particularly promising avenue of methodological develop-
ment to combat these difficulties is in the application and analysis
of video and still photographic images. Baited and unbaited
underwater video cameras have been used for some time, and to
great effect, to estimate fish abundance and diversity (e.g. Watson
et al.,, 2005; Harvey et al., 2007; Field et al., 2009). While still
photographs have been used for over half a century (e.g. Connell et
al., 2004), they have traditionally been analysed manually, with
individual species identified by relevant taxonomic experts. The
automated analysis of still photographs of marine habitats and
biota at various scales has only recently been recognised as a
potentially efficient biodiversity assessment tool (Mellin et al.,
2012; Lambert et al., 2013).

Automated or semi-automated image analysis of still photo-
graphs in the context of biodiversity assessment relies on the
following assumptions: (i) that structurally complex environments
provide, on average, more niches for species (Huston, 1979; Levin,
1999; Bolam et al.,, 2002), such that direct measurements of
species richness (including its variants) should be higher in more
spatially complex sampling units; (ii) that for any given spatial
scale, structural complexity is by definition greater when the
species present are arranged in more spatially complex patterns
than in simple patterns (so for example, a chess board is more
complex than a board with one half painted white, and the other
half painted black); (iii) that two-dimensional photographic
images can capture this structural complexity (Proulx and Parrott,
2008, 2009) such that (iv) simple metrics of image heterogeneity
are positively correlated with the biodiversity present at the
sampling site (Mellin et al., 2012). While the first assumption has
been validated using physical descriptors for coral reefs (Luckhurst
and Luckhurst, 1978; Friedlander and Parrish, 1998; Attrill et al.,
2000), only recently has it been tested using image analysis
(Mellin et al., 2012; Lambert et al., 2013). Mellin et al. (2012) found
that habitat complexity of coral reefs derived from image analysis
at scales of 1-20 km explained up to 29-33% of variation in fish
abundance, richness and community structure. Lambert et al.
(2013) applied the approach to images of the seafloor substrate
at finer spatial scales (0.14 m?), and concluded that it was not
as effective at predicting epifaunal density as laser line techniques
used to measure sea floor rugosity. Earlier work in freshwater
lakes showed that a simpler technique, optical intensity, provided
an index that was highly correlated to rugosity, and that it was
a good predictor of fish richness, diversity and abundance at a
scale of 25 m? (Shumway et al., 2007). These techniques have
also been applied successfully in a variety of terrestrial systems
(St-Louis et al., 2006; Bellis et al., 2008; Estes et al., 2008; Proulx
and Parrott, 2008, 2009; Oldeland et al., 2010).

Here, we examine the potential of the automated image
analysis techniques described by Mellin et al. (2012) and Lambert
et al. (2013) to assess the relationship between habitat complexity
and benthic epibiota richness and evenness at small spatial scales
(0.04 m?). While the previous studies examined the relationship
between habitat complexity and the diversity and/or abundance
of species not necessarily in the image, here we examine the
relationship between image heterogeneity and the diversity of
species that are present in the image. The ultimate goal is to
establish an automated technique for image analysis that provides
a reliable preliminary index of marine epibiota biodiversity
without the need for comprehensive and time-consuming manual
data extraction and species identification typical of processing

images of marine benthos. Instead, the method automatically
computes metrics describing the heterogeneity (texture) of the
entire image for each of its colour components, and uses these as a
multivariate index of image, and by proxy habitat, complexity. If
reliable, such a technique would be particularly valuable for
monitoring benthic epibiota, for example as part of an impact
assessment study or for performance assessment of marine
protected areas. A particular advantage is that it could be used
to provide a rapid initial assessment of changes in biodiversity,
which if detected, could be followed up by more time-consuming,
traditional analysis of the photographs to determine in more detail
what changes have occurred, and to ensure that putative changes
are real and not related to changes in environmental conditions
that influence the image but not the assemblage (e.g., light
availability at the time of the survey).

2. Materials and methods
2.1. Study area and data collection

As part of the Transects for Environmental Monitoring and
Decision Making network (TREND; www.trendsa.org.au), we
photographically examined spatial and temporal variation in
benthic assemblages on jetty pylons at five locations (Rapid Bay,
Outer Harbour [Adelaide], Ardrossan, Klein Point and Stenhouse
Bay) in Gulf St Vincent, South Australia (Fig. 1). Here we use the
images from one survey as a case study for the use of image derived
indices to predict biodiversity. We chose locations where jetty
pylons extended to a sufficient depth (>7 m at lowest astronomical
tide) on which we could establish sampling quadrats at three
depths: ~2,4 and 6 m at lowest astronomical tide. At Stenhouse
Bay, Klein Point and Outer Harbour, we surveyed only a single site,
whereas at Rapid Bay and Ardrossan, the jetty structure allowed us
to survey two separate sites, each site being an individual dolphin
(group of pylons), thus allowing an examination of within-jetty
variation. We chose 10 pylons at each site on which we set
20 cm x 20 cm sampling quadrats (with one quadrat per pylon and
depth level, i.e., 30 quadrats/site). Pylons were mostly square or I-
shaped of approximately 25 cm x 25 cm dimensions, but with
round pylons of approximately 30-cm radius at Klein Point.

For all quadrats at each site we took photographs (Fig. 2) with a
Panasonic Lumix (DMC-FT2) digital camera set on auto and Inon
UWL100-28AD lens, using a frame that ensured they were taken
from an equal distance (28 cm) from the pylon and with 2 Inon
D180 strobes attached at fixed distances and angles. All photo-
graphs were taken in February 2012. Of the 210 quadrats
photographed, 12 images at Outer Harbour and 1 at Klein Point
were of poor quality due to high turbidity, and <50% of randomly
selected points (see below) within the image could be assigned to a
taxon. We deleted these photographs from the dataset. For the
remaining 197 photographs, we calculated percent cover only on
the points that could be assigned to a taxon (there was no bare
substratum in any of these plots).

We subsequently cropped each photograph to retain only the
area inside the quadrat frame, and then analysed them using two
different techniques. First, a benthic invertebrate specialist scored
them, with the aid of an algal specialist, to determine percent cover
of all taxa present from 50 stratified random points per image
using the software package photoQuad (Trygonis and Sini, 2012).
While some taxa could be unambiguously identified to species
from the photographs (with the aid of specimen collections), most
could only be identified to genus, and some to higher levels such as
family (see Supplementary Table A1 for a full list of taxa). To retain
maximum information in the analysis, taxa were analysed at the
lowest common level at which they could be identified (i.e., they
were not pooled to the lowest common level of phylum). Secondly,
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Fig. 1. Map of Gulf St Vincent, South Australia showing positions of the five study locations. Inset, map of Australia with study area boxed.

they were subjected to automated image analysis as described
below.

2.2. Image treatment

We resized each image to 1275 pixels x 1275 pixels (i.e., the
pixel dimensions of the smallest image) to ensure all images
were comparable. We then converted images from RGB (red, green,
blue) to HSV (hue, saturation and value), a colour model that is
preferred for image processing purposes since it decouples

intensity from colour-carrying information (hue and saturation),
providing a more intuitive description of colour (Gonzalez and
Woods, 2008). This separation also permits an analysis of the
degree to which colour specifically contributes to habitat
complexity. Each image was therefore encoded by a matrix of
dimensions 1275 pixels x 1275 pixels x 3 colour components.
For each of the three colour components (i.e., H, S, & V) in each
image, we calculated two measures of heterogeneity: (i) mean
information gain (MIG; also known as ‘Kullback-Leibler diver-
gence’) (Wackerbauer et al., 1994; Andrienko et al., 2000), and

Fig. 2. Representative images of quadrat photos taken at the jetty pylons. We used only the area inside the quadrat (20 cm x 20 cm) for analysis, with the image further
cropped to the pylon extent if necessary. Upper left: Ardrossan (dolphin 1); upper right: Klein Point; lower left: Outer Harbour; lower right: Stenhouse Bay.
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(ii) fourth-order mean mutual information (MMI). MIG is a
measure of disorder and quantifies the spatial heterogeneity of
an image, with values ranging from 0 for a completely solid-colour
image to 1 for a uniformly random image, and heterogeneous
images having intermediate MIG values (Mellin et al., 2012).
The MIG index for each colour component in an image is calculated
as:

_ =31 p(xylog p(x;) + S p(volog p(vy)

MIG .
log(M*/M)

where p(y;) is the relative frequency of pixel value y; in the image
and p(y;) is the relative frequency with which a specific spatial
configuration x; of k values is observed. For M classes of values, the
number of possible configurations in a k-pixel neighbourhood is M*
(Proulx and Parrott, 2009).

MMI indicates the presence of spatial structure in the image
and ranges from O for random patterns to 1 for uniform ones
(Wackerbauer et al., 1994; Proulx and Parrott, 2008). MMI is
calculated as:

_ —435, plyplog p(y) + Zl}/g p(x;)log p(x;)

MMI .
4log(M*/M)

While in theory these measures could be calculated for images
having pixel values y; over any range (e.g., integers ranging from
0 to 255 for RGB images, continuous values between 0 and 1 for
hue and saturation), doing so would be computationally intracta-
ble and lead to errors due to undersampling in images of only a few
thousand pixels (i.e., many spatial configurations x; would not be
adequately represented). To avoid biases due to undersampling,
the ratio of the total number of pixels in an image to M* should not
be <100 (Mellin et al., 2012). For this reason, pixel values need
to be re-classified into a smaller range of values and the size of
the spatial neighbourhood (k) that can be considered is limited.
For image sizes of 1275 pixels x 1275 pixels, and k = 4 (i.e., a block
of 2 pixels x 2 pixels), a maximum of M=11 colour classes is
possible. Increasing the spatial neighbourhood to k = 9 (i.e., a block
of 3 pixels x 3 pixels) decreases the number of possible colour
classes to 2 or 3 to ensure adequate representation of all possible
spatial configurations (M =2.9 to respect the above-mentioned
ratio). Given the large textural information lost in converting the
colour bands to only 2 or 3 values, and considering the probable
importance of colour and texture in determining habitat complex-
ity of shallow marine environments, we chose to maximise the
number of colour classes used in our analyses. We thus chose to
use k=4 and M =10 (while M =11 was theoretically possible, we
chose M=10 to be certain to avoid any biases and to also be
consistent with Proulx and Parrott (2008) and Mellin et al. (2012)).
We assigned each pixel value in the images an integer value in the
range 1-10 based on its classification into one of M=10 evenly
distributed classes. All image analyses have thus been done for
pixel values, y; ranging from 1 to 10.

While both MIG and MMI are different measures of Shannon
entropies (Proulx and Parrott, 2008), they are neither identical
nor highly correlated. While there is some correlation between
MIG and MMI for hue at low values, for saturation and value they
are uncorrelated (Supplementary Fig. A1l). Together, these two
sets of indices enable the detection of heterogeneous (i.e., neither
random nor completely ordered) (sensu Parrott, 2010) spatial
patterns in images corresponding to highly complex natural
habitats. Matlab code to calculate MIG and MMI is available for
download from http://complexity.ok.ubc.ca/projects/measuring-
complexity.

2.3. Analysis

The analysis followed three main steps. First, we assessed the
variation in image indices among sites and depth levels. Second, we
modelled standard univariate biodiversity indices (i.e., benthic
taxonomic richness and evenness in taxon abundances) as a
function of image indices. Last, we modelled multivariate biodiver-
sity indices (matrix of benthic taxa percent coverage) as a function
of image indices, accounting for the spatial structure in the data.

2.3.1. Image indices

We first assessed the extent to which image indices (MIG and
MMI of the hue, saturation and value) varied among sites and
depth levels, these indices being considered both (i) separately
and (ii) collectively. We achieved this by using (i) generalised
mixed-effects linear models (GLMM) of each image index (e.g., MIG
of the hue) with random effects Site, or Depth nested within Site,
to test which spatial structure best represented the data; and (ii) a
multivariate analysis of variance (based on distance matrices and
1000 permutations; PERMANOVA) (Anderson, 2001) of the entire
matrix of image indices (MIG and MMI of the hue, saturation and
value), with Site and Depth as predictors. Depth was accounted for
as a three-level factor (i.e., upper ~2 m; mid ~4 m; deeper ~6 m
below lowest astronomical tide).

All image indices were bounded by O and 1, so we used a
binomial error distribution with a logit link in the GLMM. Although
the binomial error distribution is more commonly applied to
counts of successes and failures (or the ratio between them), it can
also be the most appropriate error distribution for ecological
indices bounded by O and 1 (Mellin et al., 2014). This assumption
was validated by the normal distribution of model residuals
assessed using normalised scores of standardised residual devi-
ance (Q-Q plots). We evaluated model support using Akaike’s
information criterion corrected for small sample sizes (AIC.) and
corresponding weights (WAIC,) that assign relative strengths of
evidence to the different competing models (Burnham and
Anderson, 2002, 2004). We also used the percent deviance
explained in the response variable (De) as a measure of the
model’s goodness-of-fit, calculated as the difference between each
model’s deviance and that of the null (intercept only) model,
multiplied by 100 and divided by the null deviance.

2.3.2. Univariate biodiversity indices

We modelled two univariate indices of benthic biodiversity
from the benthic percent cover matrix for each individual image:
taxonomic richness (denoted as R here to avoid confusion with
image saturation [S]), defined as the total number of taxa recorded
in each quadrat (i.e., the number of taxa when identified to the
most precise taxonomic level possible; not necessarily to species),
and Shannon’s evenness index (denoted as E here to avoid
confusion with image hue [H]) as a measure of evenness in taxon
abundances within each quadrat (Krebs, 1999). Also known as
‘equitibility’, Shannon’s evenness index describes the distribution
of abundances of all taxa, with a totally ‘even’ community being
one with equal abundances of all species represented.

We predicted R and E as a function of image indices using two
sets of random-intercept, fixed-slope, Poisson error-distributed
GLMM with Site as a random effect to account for the non-
independence of quadrats within the same site. We also included
Depth as a fixed effect; including it as an additional random effect
resulted in no improvement in model performance based on wAIC,
(Supplementary Table A2). The models used are of the form:

S~a+ B, MIGH + B,MIGS + B, MIG.V + B, Depth + S (1|Site) + €

For each response variable (R or E), the final model set consisted of
(i) MIG indices, Depth (fixed) and Site (random), (ii) MMI indices,
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Depth (fixed) and Site (random), (iii) both MIG and MMI indices,
Depth (fixed) and Site (random), (iv) Depth and Site (spatial
structure) only and (v) the null (intercept-only) model. To assess
potential nonlinear relationships between image indices and R or
E, we considered both linear and quadratic terms for each image
index (e.g., MIG of the hue) in the models. We did not consider
other combinations of MIG and MMI indices in the final model
set because a preliminary model set showed that they received
no support (i.e., negligible Akaike weights based on AIC,, i.e.,
wAIC, < 0.001).

We assessed the predictive ability of the top-ranked model
according to AIC. using a 10-fold cross-validation (Davison and
Hinkley, 1997). This bootstrap resampling procedure (here using
1000 iterations) estimates the mean model prediction error for
10% of observations randomly omitted from the calibration dataset.

2.3.3. Multivariate biodiversity indices

We partitioned the variation in the benthic percent cover
matrix explained by image indices (MIG and MMI) and by the
spatial structure (Depth within Site) using a constrained distance-
based redundancy analysis with 1000 permutations (Legendre and
Anderson, 1999). To achieve this, we computed a Bray-Curtis
distance matrix based on the benthic cover matrix and a Euclidian
distance matrix based on image indices (i.e., including both MIG
and MMI indices). Successively constraining each source of
variation (i.e., image indices or spatial structure) on the others
allowed us to estimate the proportion of variance explained by
each source exclusively as well as shared proportions.

To estimate the correlation between image indices and
multivariate indices of benthic diversity, we did a Mantel
correlation test between benthic and image indices’ distance
matrices based on 1000 permutations. We used Bray-Curtis
distance for benthic cover and Euclidean distance for image
indices; both were calculated using the vegdist function of the
vegan package (Oksanen et al., 2013) in R (R Core Team, 2013).

To visualise the correlation between the ordination of sites
based on benthic composition and that based on image indices, we
did a non-metric multidimensional scaling based on these two
matrices, followed by a Procrustes rotation of the image MDS based
on the benthic one to make them readily comparable (Peres-Neto
and Jackson, 2001). Finally, we did a Procrustes test of the
correlation between the two resulting configurations (Peres-Neto
and Jackson, 2001).

3. Results
3.1. General biodiversity patterns

The invertebrate assemblages present on the jetty pylons at
each site were diverse, with between 33 and 60 taxa present in
the 30 quadrats at each site, and an average of 6.44 + 0.18 (SE) taxa
per quadrat. We identified 133 taxa in total across all five jetties,
112 invertebrates and 21 algae (Supplementary Table A1). Assem-
blage composition was highly variable among sites, and even
between dolphins only 10-20 m apart (Fig. 3). At Ardrossan, one
dolphin was dominated by anthozoans, primarily the soft coral
Carijoa sp. and the hard coral Culicea sp. (55.1 + 4.3%), whereas the
other was dominated by unidentified rhodophyta (red algae,
63.6 + 3.1%). Klein Point was also dominated by rhodophyta, being
primarily a mix of Laurencia sp. and unidentified species
(56.6 &+ 6.1%). The other sites were less dominated by a single group,
although in all cases one group of organisms exceeded 30% cover
(Outer Harbour - polychaete worms, entirely the invasive Sabella
spallanzanii; Rapid Bay and Stenhouse Bay - anthozoa, primarily the
scleractinian coral Culicea sp. at the former and the soft coral Drifa
gaboensis at the latter). Species abundance distribution curves based

on individual taxa showed a similarly strong pattern of dominance
by a few individual taxa at each site (Supplementary Fig. A2). For six
of the seven sites, two taxa accounted for >50% of the cover, with
the exception being Rapid Bay 2, where the two most dominant
taxa accounted for 49%. There was then a long tail of increasingly rare
taxa. An unidentified rhodophyte and Culicea sp. had the broadest
distribution, occurring in 109 and 104 of the 197 quadrats,
respectively, and were the only two taxa with >10% cover when
averaged across all sites (Supplementary Table A1).

3.2. Spectral signal-biodiversity relationships

We found evidence for an effect of Site on all image indices
(Supplementary Table A2), explaining up to 25% of deviance in the
MIG of the hue (MIG_H). This suggests that the deviance in MIG
most likely arises from variation in colour among taxa and not
just variation in light intensity among depths, sites or sampling
times. When all image indices were considered collectively, Site
explained 43% of the variation in the image index matrix
(P < 0.001; PERMANOVA; 1000 permutations).

Benthic taxon richness (R) and Shannon’s evenness (E) differed
among Site levels, and among Depth levels to a lesser extent (Fig. 4).
Site (random) and Depth (fixed) explained 14% of deviance in R and
6% of deviance in E (Table 1). Adding MIG and MMI indices as fixed
effects in the models resulted in an increase of the deviance
explained to 34.5% for R and 43.1% for E. Including the location (to
account for variable number of sites; i.e., dolphins, in each location)
did not result in any model improvement (Supplementary Table
A3), so we only kept Site as a random effect in the final models. The
top-ranked models resulted in a mean cross-validated prediction
error of 24% for R and 28% for E; residuals were normally
distributed and predictions explained 34 and 36% of variation in
observations of R and E, respectively (Supplementary Fig. A3).

Distance matrices based on image indices and on benthic
composition were correlated (Spearman’s p=0.26; P < 0.001;
1000 permutations). Partitioning the variation in the benthic cover
matrix resulted in 25% of variation explained by image indices
(within-image spatial structure), most of which was also reflected
by the between-image spatial structure (i.e., Site and Depth, Fig. 5).
Another 24% was explained by the between-image spatial
structure only (i.e., conditioned on the image indices), resulting
in 49% attributed to the spatial structure in total, while 51% of
variation remained unexplained (residuals). The MDS based on the
benthic composition showed a similar site configuration to that
given by the Procrustes-rotated MDS based on image indices,
although image indices poorly captured the singularity of Rapid
Bay quadrats (Fig. 6). The two configurations were strongly
correlated (Procrustes correlation test, r=0.47, P < 0.001).

4. Discussion

Our study adds to the small but growing body of evidence that
image analysis can provide reasonable proxies for quantifying at
least some components of marine biodiversity patterns ‘at a
glance’, regardless of spatial scale (Andréfouét et al., 2010; Mellin
etal., 2012). Indeed, after accounting for spatial non-independence
of the sampling sites, we could effectively explain ~35% of the
variation in identified taxon richness, over 43% in taxonomic
evenness, and up to ~50% in taxon dissimilarity, which are
comparable to the variances explained in reef fish biodiversity by
image analysis at broader scales in the Great Barrier Reef (Mellin et
al., 2012). This also compares favourably to other studies using
surrogate measures for biodiversity. For example, Huang et al.
(2012) found a wide range of traditional surrogates to explain
between 32 and 79% of the variation in a range of diversity metrics
and infauna species abundances, while Przeslawski et al. (2011)
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Fig. 3. Percentage cover frequency histograms for major taxonomic groups represented on quadrats. For clarity, echinodermata, mollusca and calcarea, each of which occupy

<0.5% of the substratum at all sites, are not plotted.

showed that benthic invertebrate community structure was
related to habitat characteristics with ANOSIM R statistic ranging
from 0.31 to 0.42.

While there is obviously no replacement for physical sampling
and detailed species identification using either traditional
taxonomy or genetic barcoding, the advantage of quick-assess-
ment photographic proxies is obvious. Not only is the level
of expertise required low, thus making it an ideal application for
less-experienced students or technicians, the ease and cost
efficiency of collecting and analysing digital photographs will suit
a wide variety of marine applications. These could include inter
alia assessments of marine protected areas, invasive species

monitoring, disturbance impacts (e.g., before-after/control-im-
pact experiments), and general biodiversity monitoring studies.
Indeed, many such studies already rely partly or fully on
photographic data collection, and thus the field component would
not need to change. For this study, processing of the images and
identification by a taxonomic expert took some 30-40 min per
image. In comparison, processing of the images and calculation of
MIG and MMI only required 1-2 min per image, representing a
saving of 100+ hours for the 197 images analysed here. In a
companion project, ~1500 images are available, and the potential
saving of 750+ hours represents 20 weeks full-time work by
someone with good taxonomic skills. As with any technique,
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however, the utility of these image indices needs to be confirmed
for each individual application before they are broadly applied.
Further, many of our sample quadrats were dominated by only a
few taxa — a phenomenon likely characteristic of many fine-scale
assessments - yet the predictive performance was still remarkably
high. In other words, the technique should be effective in both
species-rich and species-poor environments.

The indices of complexity we used here detect spatial
heterogeneity in the photographed scene. The analyses are based
on the assumption that increased taxonomic diversity increases
image heterogeneity, producing patterns of colour and texture in
the photograph that are neither random nor uniform (Proulx and
Parrott, 2008). Indeed, it is logical to suppose that a more diverse
benthic epibiota community should present a wider variety of

Table 1

Final generalised linear mixed-effects model (GLMM) results for species richness
(R) and Shannon’s evenness index (E) as a function of mean information gain (MIG)
and mean mutual information (MMI) indices of image heterogeneity (both include
image hue, saturation and value, so for example MIG=MIG_H +MIG_S + MIG_V),
site and depth. MIG? (or MMI?) indicates that quadratic terms of MIG (or MMI)
indices are included in addition to linear terms. All models include spatial structure
among sites as the random effect (excluding the intercept-only null model). Shown
are the estimated number of model parameters (j), maximum log-likelihood, the
information-theoretic Akaike's information criterion corrected for small samples
(AIC,), AIC. weight (WAIC.=model probability) and the percent deviance explained
(De) as a measure of the model’s goodness-of-fit. Models are ordered by decreasing
WAIC,.

Model j L AIC, WAIC.  De

R~ MIG +MMI + Depth +(1|Site) 11 -63.79 151.01 0795 34.46
R~MIG? + MMI? + Depth+(1|Site) 17  —58.16 153.74  0.203 40.24
R~MMI? + Depth +(1|Site) 11 -69.73 16289  0.002 2835
R~MIG? + Depth +(1|Site) 11 -7239 16822 <0.001 2561
R~ MMI+Depth +(1]|Site) 8 7800 172.76 <0.001 19.86
R~ MIG +Depth +(1]|Site) 8§ -78.88 17453 <0.001 18.95
R~ Depth+(1|Site) 5 -8373 17778 <0.001 13.97
R~1+(1|Null_RE) 3 9732 20077 <0.001 -

E~MIG?+MMI?+Depth+(1|Site) 17  —73.92 185.25 1.000 43.10
E ~MMI? + Depth +(1|Site) 11 -98.04 21951 <0.001 2452
E ~MIG + MMI + Depth +(1|Site) 11 -99.90 22322 <0.001 23.10
E ~MIG? + Depth +(1|Site) 11 -10026 22394 <0.001 22.82
E ~MIG +Depth +(1]Site) 8 —11526 24729 <0.001 11.27
E~MMI + Depth +(1|Site) 8§ -115.81 24838 <0.001 10.85
E ~Depth +(1|Site) 5 -12223 25477 <0.001 5.0
E~1+(1|Null_RE) 3 -129.90 26592 <0.001 -

shapes and colours and that this variety would be detectable in an
image. Complexity, however, goes further than this, and also
incorporates the spatial arrangement of the species present. For
example, two plots each with 50% cover of species A and 50% cover
of species B have the same species richness and evenness.
However, if one plot has a single colony of each, while the other
plot has 20 intermingled colonies, they will have greatly different
complexity, and potentially different responses to perturbations.
This within-plot spatial heterogeneity will account for an
unknown proportion of the unexplained variance that we
document. However, rather than being extraneous noise, this
heterogeneity is actually an important part of the signal, as more
complex ecological systems tend to be more resilient (McCann,
2000; Ives and Carpenter, 2007). Such simple measures of
complexity like those we used provide promising avenues for
rapidly assessing and monitoring the states of a wide range of
ecosystem types (Parrott, 2010).

Image heterogeneity will also be influenced by the species
abundance distribution (Supplementary Fig. A2), with images
dominated by a single species likely to be more homogenous than
an image with the same number of species but a more even
distribution. Thus we were able to explain more variation in
taxonomic evenness (43%) than richness (35%). Oldeland et al.
(2010) found a similar result for terrestrial vegetation, ascribing it
to the fact that evenness better matches vegetation structure,
which is a component of habitat heterogeneity. Similarly, Foody
and Cutler (2003) and Dogan and Dogan (2006) found that image
analysis explained a greater proportion of the variation in evenness
than richness, although the difference tended to be small,
suggesting that this may be a general trend.

Methodological issues related to the size and resolution of
photographic images we used need to be considered when
calculating MIG and MMI. For comparative purposes, all images
need to be the same number of pixels in size and should represent
the same spatial extent. As for any spatial analysis, decreasing the
resolution (i.e., increasing the grain) of an image increases the size
of the smallest spatial structures that can be detected. Since habitat
complexity is likely scale-dependent, substantially decreasing
image resolution can affect results by reducing the ability of the
algorithms to detect fine-scale heterogeneity in the photographed
scene. Ultimately, the choice of spatial extent and resolution
defines the scales of structures that can be studied in an image. The
number of photographs also needs to be carefully considered.
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Between-image spatial

Fig. 5. Venn diagram of variation in the benthic cover matrix partitioned among
fixed effects from redundancy analysis models. Numbers given are percent
variation in the benthic cover matrix. The dark envelope represents the total
variation explained by indices of image heterogeneity (mean information gain
[MIG] and mean mutual information [MMI]). Between-image spatial refers to the
Depth within Site spatial structure.

While we have used a relatively low number of images (197)
compared to what are often available, further decreases in sample
size would likely result in model over-parameterisation, and the
need to focus on simpler models. Whether these models would
then be able to capture a meaningful proportion of the deviance in
the data would have to be determined.

Another advantage of spectral analysis is that it does not
preclude more detailed analysis of the photographic images later
if the initial findings show a pattern of interest. The photographs
can still be used for more traditional approaches such as
determining percent cover of different taxa, and with the rapidly
increasing resolution of digital cameras, the taxonomic resolution
achievable is now reaching species level in some higher taxa (e.g.,
scleractinian corals, Tanner, pers. obs.). While many of the taxa
recorded here could not be identified to species, we are confident
that most would either be a single species, or a cluster of cryptic

Benthic composition

species. It is unlikely that better taxonomic resolution could have
been achieved via time consuming in situ identification, and
assigning the taxa identified here to species would require
collection of specimens and detailed laboratory work by an expert
taxonomist. Given the long tail of rare taxa present (Supplemen-
tary Fig. A2), to collect all of them for laboratory identification
would require either sacrificing the survey plots, or sacrificing a
much larger area adjacent to them. The former would preclude any
form of repeated sampling, while the latter could influence the
target assemblage due to extensive manipulation and destruction
of surrounding organisms. There is also increasing pressure from
managers to move to non-destructive sampling, especially in
marine parks, making it necessary to extend the suite of tools
available for photo-analysis. An increasing number of studies have
examined the issue of taxonomic sufficiency for marine benthos,
and have shown that diversity at the genus and/or family level
is generally a good predictor of diversity at the species level
(e.g., Hirst, 2008; Bevilacqua et al., 2012), and hence in terms of
examining patterns of biodiversity, it is not particularly important
to identify the taxa present to species level.

As awareness of marine conservation is growing, there is
increasing research into the use of surrogates to measure patterns
in biodiversity (Wtodarska-Kowalczuk and Kedra, 2007; Musco
et al., 2009; McArthur et al., 2010; Mellin et al., 2011; Smale et al.,,
2011), and many marine planning decisions are now based on
surrogates rather than fully quantifying the assemblage(s) of
interest. However, often there is little or no assessment of how well
the patterns in these surrogate variables reflect patterns in
individual components of biodiversity (Hirst, 2008; Mellin et
al.,, 2011; Kenchington and Hutchings, 2012). That we can capture
some 50% of the variation in community composition in simple
models using indices from photographs bodes well for the use of
this technique as a surrogate for biodiversity.

Our study also advances our previous work at broader scales
(Mellin et al., 2012) by demonstrating the utility of incorporating
multiple spectral signals into a biodiversity metric, rather than
relying on a single spectral signal. In all responses and combina-
tions we considered, the combination of hue, saturation and value
in both mean information gain and mean mutual information
consistently gave the best predictive results. MIG and MMI are only
weakly correlated (Spearman’s p = 0.30), and measure different
aspects of image heterogeneity, and so should be considered
simultaneously when assessing spectral signal performance.

Image indices (Procrustes-rotated)

Dimension 2

Dimension 1

Dimension 1

Fig. 6. Non-metric multidimensional scaling of the benthic composition matrix (left panel) and the image index matrix (right panel) after a Procrustes rotation of the latter
based on the former (see text for details). Colours correspond to sites (see abbreviations in Fig. 1).
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Additional work is required to assess the effectiveness of
spectral signals for quantifying epibiota biodiversity patterns at all
scales, but particularly for fine- and meso (1-100 m) scales.
Further, performance needs to be assessed under different light
availability, depth, turbidity, temperature and ecotone conditions.
Although we sampled three depth levels, these were only 2 m apart
and did not result in any differences, either in terms of image
complexity or benthic diversity among depths. However, we did
factor out the potential effect of (unmeasured) turbidity condi-
tions; indeed, visibility at Outer Harbour (a working port) was only
1-2 m, and at Rapid Bay and Stenhouse Bay it was typically 10-
15 m, with both being in more oceanic waters near the mouth of
Gulf St Vincent. The influence of topographic complexity that is
invariably present in natural substrata also needs to be investigat-
ed, as the assemblages surveyed here were growing on flat jetty
pylons. This topographic complexity is likely to add heterogeneity
to an image, over and above that due to any increases in
biodiversity associated with an increase in microhabitat availabil-
ity, because it will cast different patterns of light and shade on the
image. It also remains inconclusive whether such image analysis
can be used as diversity proxies for microscopic (e.g., plankton) or
mobile (e.g., macroalgae- or seagrass-associated invertebrate)
taxa, although measures of habitat are not always a useful
surrogate for the latter (Hirst, 2008; Birdsey et al., 2012). This
image-analysis approach is also unlikely to be useful for examining
infaunal assemblages, because these are structured more by
subsurface physical attributes than surface habitat complexity.
Nonetheless, the accumulating evidence predicts that it will be
useful in many situations, and can be cautiously considered
alongside existing techniques in future plans for biodiversity
assessment, or applied to archived photos from previous research.
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