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Abstract

The pursuit of simple, yet fair, unbiased, and objective measures of researcher performance

has occupied bibliometricians and the research community as a whole for decades. How-

ever, despite the diversity of available metrics, most are either complex to calculate or not

readily applied in the most common assessment exercises (e.g., grant assessment, job

applications). The ubiquity of metrics like the h-index (h papers with at least h citations) and

its time-corrected variant, the m-quotient (h-index� number of years publishing) therefore

reflect the ease of use rather than their capacity to differentiate researchers fairly among dis-

ciplines, career stage, or gender. We address this problem here by defining an easily calcu-

lated index based on publicly available citation data (Google Scholar) that corrects for most

biases and allows assessors to compare researchers at any stage of their career and from

any discipline on the same scale. Our ε0-index violates fewer statistical assumptions relative

to other metrics when comparing groups of researchers, and can be easily modified to

remove inherent gender biases in citation data. We demonstrate the utility of the ε0-index

using a sample of 480 researchers with Google Scholar profiles, stratified evenly into eight

disciplines (archaeology, chemistry, ecology, evolution and development, geology, microbi-

ology, ophthalmology, palaeontology), three career stages (early, mid-, late-career), and

two genders. We advocate the use of the ε0-index whenever assessors must compare

research performance among researchers of different backgrounds, but emphasize that no

single index should be used exclusively to rank researcher capability.
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Introduction

Deriving a fair, unbiased, and easily generated quantitative index serving as a reasonable first-

pass metric for comparing the relative performance of academic researchers is—by the very

complexity, diversity, and intangibility of research output across academic disciplines—impos-

sible [1]. However, that unachievable aim has not discouraged bibliometricians and non-bib-

liometricians alike from developing scores of citation-based variants [2–4] in an attempt to do

exactly that, from the better-known h-index [5, 6] (h papers with at least h citations), m-quo-

tient [5, 6] (h-index� number of years publishing), and g-index [7] (unique largest number

such that the top g papers decreasingly ordered by citations have least g2 citations), to the

scores of variants of these and other indices—e.g., h2-index, e-index [8], χ-index [9], hm-index

[10], gm-index [11], etc. [3]. Each metric has its own biases and strengths [12–14], suggesting

that several should be used simultaneously to assess citation performance. For example, the

arguably most-popular h-index down-weights quality relative to quantity [15], ignores the

majority of accumulated citations in the most highly cited papers [16], has markedly different

distributions among disciplines [17], and tends to increase with experience [18]. As such, It

has been argued that the h-index should not be considered for ranking a scientist’s overall

impact [19]. The h-index can even rise following the death of the researcher, because the h-

index can never decline [2] and citations can continue to accumulate posthumously.

Despite their broad use for inter alia assessing candidates applying for academic positions,

comparing the track records of researchers applying for grants, to applications for promotion

[3, 20], single-value citation metrics are rarely meant to (nor should they) be definitive assess-

ment tools [3]. Instead, their most valuable (and fairest) application is to provide a quick ‘first

pass’ to rank a sample of researchers, followed by more detailed assessment of publication

quality, experience, grant successes, mentorship, collegiality and all the other characteristics

that make a researcher more or less competitive for rare positions and grant monies. But

despite the many different metrics available and arguable improvements that have been pro-

posed since 2005 when the h-index was first developed [5, 6], few are used regularly in these

regards. This is because they are difficult to calculate without detailed data of a candidate’s

publication history, they are not readily available on open-access websites, and/or they tend to

be highly correlated with the h-index anyway [21]. It is for these reasons that the admittedly

flawed [19, 22, 23] h-index and its experienced-corrected variant, the m-quotient, are still the

dominant (h-index much more so than the m-quotient) [2] metrics employed given that they

are easily calculated [2, 24] and found for most researchers on open-access websites such as

Google Scholar [25] (scholar.google.com). The lack of access and detailed understanding of

the many other citation-based metrics mean that most of them go unused [3], and are essen-

tially valueless for every-day applications of researcher assessment.

The specific weaknesses of the h-index or m-quotient make the comparison of researchers

in different career stages, genders, and disciplines unfair because they are not normalized in

any way. Furthermore, there is no quantitatively supported threshold above or below which

assessors can easily ascertain minimum citation performance for particular applications—

while assessors certainly use subjective ‘rules of thumb’, a more objective approach is prefera-

ble. For this reason, an ideal citation-based metric should only be considered as a relative

index of performance, but relative to what, and to whom?

To address these issues and to provide assessors with an easy, rapid, yet objective relative
index of citation performance for any group of researchers, we designed a new index we call

the ‘ε-index’ (the ‘ε’ signifies the use of residuals, or deviance from a trend) that is simple to

construct, can be standardized across disciplines, is meaningful only as a relative index for a

particular sample of researchers, can be corrected for career breaks (see Methods), and
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provides a sample-specific threshold above and below which assessors can determine whether

individual performance is greater or less than that expected relative to the other researchers in

the specific sample.

With the R code and online app we provide, an assessor need only acquire four separate

items of information from Google Scholar (or if they have access, from other databases such as

Scopus—scopus.com) to calculate a researcher’s ε-index: (i) the number of citations acquired

for the researcher’s top-cited paper (i.e., the first entry in the Google Scholar profile), (ii) the

i10-index (number of articles with at least 10 citations), (iii) the h-index, and (iv) the year in

which the researcher’s first peer-reviewed paper was published. While the last item requires

sorting a researcher’s outputs by year and scrolling to the earliest paper, this is not a time-con-

suming process. We demonstrate the performance of the ε-index using Google Scholar cita-

tion data we collected for 480 researchers in eight separate disciplines spread equally across

genders and career stages to show how the ε-index performs relative to the m-quotient (the

only other readily available, opportunity-corrected citation index available on Google Scholar)

across disciplines, career stages, and genders. We also provide a simple method to scale the

index across disciplines (ε0-index) to make researchers in different areas comparable despite

variable citation trends within their respective areas.

Materials and methods

Researcher samples

Each co-author assembled an example set of researchers from within her/his field, which we

broadly defined as archaeology (S.A.C.), chemistry (J.M.C.), ecology (C.J.A.B.), evolution/devel-
opment (V.W.), geology (K.T.), microbiology (B.A.E.), ophthalmology (J.R.S.), and palaeontology
(J.A.L.). Our basic assembly rules for each of these discipline samples were: (i) 20 researchers

from each stage of career, defined here arbitrarily as early career (0–10 years since first peer-

reviewed article published in a recognized scientific journal), mid-career (11–20 years since

first publication), and late career (> 20 years since first publication); each discipline therefore

had a total of 60 researchers, for a total sample of 8 × 60 = 480 researchers across all sampled

disciplines. (ii) Each sample had to include an equal number of women and men from each

career stage. (iii) Each researcher had to have a unique, publicly accessible Google Scholar pro-

file with no obvious errors, inappropriate additions, obvious omissions, or duplications. The

entire approach we present here assumes that each researcher’s Google Scholar profile is accu-

rate, up-to-date, and complete.

We did not impose any other rules for sample assembly, but encouraged each compiler to

include only a few previous co-authors. Our goal was to have as much ‘inside knowledge’ as

possible with respect to each discipline, but also to include a wide array of researchers who

were predominantly independent of each of us. The composition of each sample is somewhat

irrelevant for the purposes of our example dataset; we merely attempted gender and career-

level balance to show the properties of the ranking system (i.e., we did not intend for sampling

to be a definitive comment about the performance of particular researchers, nor did we mean

for each sample to represent an entire discipline). Finally, we completely anonymized the sam-

ple data for publication.

Citation data

Our overall aim was to provide a meaningful and objective method for ranking researchers by

citation history without requiring extensive online researching or information that was not

easily obtainable from a publicly available, online profile. We also wanted to avoid an index
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that was overly influenced by outlier citations, while still keeping valuable performance infor-

mation regarding high-citation outputs and total productivity (number of outputs).

For each researcher, the algorithm requires the following information collected from Goo-

gle Scholar: (i) i10-index (the number of publications in the researcher’s profile with at least

10 citations, which we denoted i10); one condition is that a researcher must have i10� 1 for the

algorithm to function correctly; (ii) h-index—the researcher’s Hirsch number [5]: the number

of publications with at least as many citations, which we denoted h; (iii) the number of cita-

tions for the researcher’s most highly cited paper (denoted cm); and (iv) the year the researcher

published her/his first peer-reviewed article in a recognized scientific journal (denoted Y1).

For the designation of Y1, we excluded any reports, chapters, books, theses or other forms of

publication that preceded the year of the first peer-reviewed article; however, we included cita-

tions from the former sources in the researcher’s i10, h, and cm.

Ranking algorithm

The algorithm first computes a power-law-like relationship between the vector of frequencies

(as measured from Google Scholar): i10, h, and 1, and the vector of their corresponding values:

10, h, and cm, respectively. Thus, h is, by definition, both a frequency (y-axis) and value (x-

axis). We then calculated a simple linear model of the form y ~ α + βx, where

y ¼ loge

i10

h

1

2

6
4

3

7
5 and x ¼ loge

10

h

cm

2

6
4

3

7
5

(y is the citation frequency, and x is the citation value) for each researcher (S1 Fig). The cor-

responding â and b̂ for each relationship allowed us to calculate a standardized integral (area

under the power-law relationship, Arel) relative to the researcher in the sample with the highest

cm. Here, the sum of the predicted y derived from incrementing values of x (here in units of

0.05) using â and b̂ is divided by the product of cm and the number of incremental x values.

This implies all areas were scaled to the maximum in the sample, but avoids the problem of

truncating variances near a maximum of 1 had we used the maximum area among all research-

ers in the sample as the denominator in the standardization procedure.

A researcher’s Arel therefore represents her/his citation mass, but this value still requires cor-

rection for individual opportunity (time since first publication, t = current year–Y1) to compare

researchers at different stages of their career. This is where career gaps can be taken into account

explicitly for any researcher in the sample by subtracting ai = the total cumulative time absent

from research (e.g., maternity or paternity leave, sick leave, secondment, etc.) for individual i
from t, such that an individual’s career gap-corrected t0i ¼ ti � ai. We therefore constructed

another linear model of the form Arel ~ γ + θloget across all researchers in the sample, and took

the residual (ε) of an individual researcher’s Arel from the predicted relationship as a metric of

citation performance relative to the rest of the researchers in that sample (S2 Fig). This residual ε
allows us to rank all individuals in the sample from highest (highest citation performance relative

to opportunity and the entire sample) to lowest (lowest citation performance relative to opportu-

nity and the entire sample). Any researcher in the sample with a positive ε is considered to be

performing above expectation (relative to the group and the time since first publication), and

those with a negative ε fall below expectation. This approach also has the advantage of fitting dif-

ferent linear models to subcategories within a sample to rank researchers within their respective

groupings (e.g., such as by gender; S3 Fig). An R code function to produce the index and its vari-

ants using a sample dataset is available from github.com/cjabradshaw/EpsilonIndex.
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Discipline standardization

Each sampled discipline has its own citation characteristics and trends [17], so we expect that

the distribution of residuals (ε) within each discipline to be meaningful only for that disci-

pline’s sample. We therefore endeavoured to scale (‘normalize’) the results such that research-

ers in different disciplines could be compared objectively and more fairly.

We first scaled the Arel within each discipline by dividing each i researcher’s Arel by the sam-

ple’s root mean square:

A0reli ¼
AreliffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Areli

n� 1

r

where n = the total number of researchers in the sample (n = 60). We then regressed these dis-

cipline-scaled A0rel against the loge number of years since first publication pooling all sampled

disciplines together, and then ranked these scaled residuals (ε0) as described above. Compari-

son between disciplines is only meaningful when a sufficient sample of researchers from within

specific disciplines first have their ε calculated (i.e., discipline-specific ε), and then each disci-

pline sample undergoes the standardization to create ε0. Then, any sample of researchers from

any discipline can be compared directly.

Results

Despite the considerable variation in citation metrics among researchers and disciplines, there

was broad consistency in the strength of the relationships between citation mass (Arel) and loge

years publishing (t) across disciplines (Fig 1), although the geology (GEO) sample had the

poorest fit (ALLR2 = 0.43; Fig 1). The distribution of residuals ε for each discipline revealed sub-

stantial difference in general form and central tendency (Fig 2), but after scaling, the distribu-

tions of ε0 became aligned among disciplines and were approximately Gaussian (Shapiro-Wilk

normality tests; see Fig 2 for test values).

Fig 1. Citation mass relative to years since first publication. Relationship between a researcher’s citation mass (Arel; area under the citation frequency–value

curve—see S2 Fig) and loge years (t) since first peer-reviewed publication (Y1) for eight disciplines (ARC = archaeology, CHM = chemistry, ECO = ecology,

EVO = evolution and development, GEO = geology, MIC = microbiology, OPH = ophthalmology, PAL = palaeontology) comprising 60 researchers each (30 ♀, 30

♂) in three different career stages: Early career researcher (ECR), mid-career researcher (MCR), and late career researcher (LCR). The fitted lines correspond to

the entire sample (solid black), women only (dashed black), and men only (dashed red). Information-theoretic evidence ratios for all relationships> 180; adjusted

R2 for each relationship shown in each panel.

https://doi.org/10.1371/journal.pone.0257141.g001
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After scaling (Fig 3A), the relationship between ε0 and the m-quotient is non-linear and

highly variable (Fig 3B), meaning that m-quotients often poorly reflect actual relative perfor-

mance (and despite the m-quotient already being ‘corrected’ for t, it still increases with t; S4

Fig). For example, there are many researchers whose m-quotient < 1, but who perform above

expectation (ε0 > 0). Alternatively, there are many researchers with an m-quotient of up to 2

or even 3 who perform below expectation (ε0 < 0). Once the m-quotient > 3, ε0 reflects above-

expectation performance for all researchers in the example sample (Fig 3B). The correspond-

ing ε0 indicate a more uniform spread by gender and career stage (Fig 3C) than do m-quotients

(Fig 3D). Further, the relationship between h-index and t (from which the m-quotient is

derived is neither homoscedastic nor Normal (S5–S12 Figs). Another advantage of ε0 versus
the m-quotient is that the former has a threshold (ε0 = 0) above which researchers perform

above expectation and below which they perform below expectation, whereas the m-quotient

has no equivalent threshold. Further, the m-quotient tends to increase through one’s career,

whereas ε0 is more stable. There is still an increase in ε0 during late career relative to mid-

career, but this is less pronounced that that observed for the m-quotient (Fig 4).

Examining the ranks derived from ε0 across disciplines, genders and career stage (Fig 5),

bootstrapped median ranks overlap for all sampled disciplines (Fig 5A), but there are some

notable divergences between the genders across career stage (Fig 5B). In general, women

Fig 2. Within-discipline residuals from the relationship between citation mass and years since first publication. Left panel: Distribution of within-discipline

residuals (ε) of the relationship between Arel and loge years publishing (t) by discipline (ARC = archaeology, CHM = chemistry, ECO = ecology, EVO = evolution

and development, GEO = geology, MIC = microbiology, OPH = ophthalmology, PAL = palaeontology), each comprising 60 researchers (30 ♀, 30 ♂). Right panel:

Distribution of among-discipline residuals (ε0) of the relationship between A0rel (scaled) and t by discipline. All A0rel distributions are approximately Gaussian

according to Shapiro-Wilk normality tests (ARC: W = 0.985, p = 0.684; CHM: W = 0.961, p = 0.051; ECO: W = 0.980, p = 0.409; EVO: W = 0.984, p = 0.630; GEO:

W = 0.929, p = 0.398; MIC: W = 0.971, p = 0.170; OPH: W = 0.980, p = 0.416; PAL: W = 0.986, p = 0.720).

https://doi.org/10.1371/journal.pone.0257141.g002
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ranked slightly below men in all career stages, although the bootstrapped median ranks overlap

among early and mid-career researchers. However, the median ranks for late-career women

and men do not overlap (Fig 5B), which possibly reflects the observation that senior academic

positions in many disciplines are dominated by men [26–28], and that women tend to receive

fewer citations than men at least in some disciplines, which often tends to compound over

time [29–32]. The ranking based on the m-quotient demonstrates the disparity among disci-

plines (Fig 5C), but it is perhaps somewhat more equal between the genders (Fig 5D) com-

pared to the ε0 rank (Fig 5B), despite the higher variability of the m-quotient bootstrapped

median rank.

However, calculating the scaled residuals across all sampled disciplines for each gender sep-

arately, and then combining the two datasets and recalculating the rank (producing a gender-

‘debiased’ rank) effectively removed the gender differences (Fig 6).

Fig 3. ε-index versus m-quotient. (a) Relationship between scaled citation mass (A0rel) and loge years publishing (t) for 480 researchers in eight different

disciplines (ARC = archaeology, CHM = chemistry, ECO = ecology, EVO = evolution and development, GEO = geology, MIC = microbiology,

OPH = ophthalmology, PAL = palaeontology) comprising 60 researchers each (30 ♀, 30 ♂). (b) Relationship between the residual of A0rel ~ loge t (ε0) and the m-

quotient for the same researchers (pink shaded area is the 95% confidence envelope of a heat-capacity relationship of the form: y = a + bx + c/x2, where a =

-0.17104 –-0.0875; b = 0.0880–0.1318, and c = -0.0423 –-0.0226). (c) Truncated violin plots of ε0 by gender and career stage (ECR = early career researcher,

MCR = mid-career researcher, LCR = late-career researcher). When ε0 < 0, the researcher’s citation rank is below expectation relative to her/his peers in the

sample; when ε0 > 0, the citation rank is greater than expected relative to her/his peers in the sample (dashed lines = quartiles; solid lines = medians). (d)

Truncated violin plot of the m-quotient by gender and career stage.

https://doi.org/10.1371/journal.pone.0257141.g003
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Discussion

Todeschini and Baccini [33] recommended that the ideal author-level indicator of citation perfor-

mance should (i) have an unequivocal mathematical definition, (ii) be easily computed from avail-

able data (for a detailed breakdown of implementation steps and the R code function, see github.

com/cjabradshaw/EpsilonIndex; we have also provided a user-friendly app available at cjabrad-

shaw.shinyapps.io/epsilonIndex that implements the code and calculates the index with user-pro-

vided citation data), (iii) balance rankings between more experienced and novice researchers (iv)

while preserving sensitivity to the performance of top researchers, and (iv) be sensitive to the

number and distribution of citations and articles. Our new ε-index not only meets these criteria,

it also adds the ability to compare across disciplines by using a simple scaling approach, and can

easily be adjusted for career gaps by subtracting research-inactive periods from the total number

of years publishing (t). In this way, the ε-index could prove invaluable as we move toward greater

interdisciplinarity, where tenure committees have had difficulty assessing the performance of can-

didates straddling disciplines [34, 35]. The ε-index does not ignore high-citation papers, but nei-

ther does it overemphasize them, and it includes an element of publication frequency (i10) while

simultaneously incorporating an element of ‘quality’ by including the h-index.

Like all other existing metrics, the ε-index does have some disadvantages in terms of not

correcting for author contribution—such as the hm-index [10] or gm-index [11]—even though

these types of metrics can be cumbersome to calculate. Early career researchers who have pub-

lished but have yet to be cited will not yet be able to calculate their ε-index, as they will not

have an h-index score, so would require different types of assessment. Another potential limi-

tation is that the ε-index alone does not correct for any systemic gender biases associated with

the many reasons why women tend to be cited less than men [26–32, 36], but it does easily

allow an assessor to benchmark any subset of researchers (e.g., women-only or men-only) to

adjust the threshold accordingly. Thus, women can be compared to other women and ranked

accordingly such that the ranks are more comparable between these two genders. Alterna-

tively, dividing the genders and benchmarking them separately followed by a combined re-

ranking (Fig 6) effectively removes the gender bias in the ε-index, which is difficult or

Fig 4. Career-stage differences in the ε0-index and m-quotient. Violin plots of scaled residuals (ε0) and m-quotient

across all eight disciplines relative to career stage (ECR = early career; MCR = mid-career; LCR = late career). Treating

career stage as an integer in a linear model shows no difference among stages for ε0 (p = 0.205), but there is evidence

for a career stage effect for the m-quotient (p = 0.000073). Likewise, treating career stage as an ordinal factor

(ECR<MCR< LCR) in a linear model shows no difference among stages for ε0 (MCR: p = 0.975; LCR: p = 0.205),

but there is evidence for a divergence of LCR for the m-quotient (MCR: p = 0.388; LCR: p = 0.000072).

https://doi.org/10.1371/journal.pone.0257141.g004
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impossible to do with other ranking metrics. We certainly advocate this approach when assess-

ing mixed-gender samples (the same approach could be applied to other subsets of researchers

deemed a priori to be at a disadvantage).

The ε-index also potentially suffers from the requirement of the constituent citation data

upon which it is based being accurate and up-to-date [37, 38]. It is therefore important that

users correct for obvious errors when compiling the four required data to calculate the ε-index

(i10, h-index, cm, t). This could include corrections for misattributed articles, start year, or even

i10. In some cases, poorly maintained Google Scholar profiles might exclude certain research-

ers from comparative samples. Regardless, should an assessor have access to potentially more

rigorous citation databases (e.g., Scopus), the ε-index can still be readily calculated, although

within-sample consistency must be maintained for the ranks to be meaningful. Nonetheless,

because the index is relative and scaled, the relative rankings of researchers should be main-

tained irrespective of the underlying database consulted to derive the input data. We also show

that the distribution of the ε-index is relatively more Gaussian and homoscedastic than the

time-corrected m-quotient, with the added advantage of identifying a threshold above and

below which individuals are deemed to be performing better or worse than expected relative to

their sample peers. While there are potentially subjective rules of thumb for thresholds to be

Fig 5. Gender differences in the ε0-index and m-quotient. (a) Bootstrapped (10,000 iterations) median ranks among the eight disciplines examined

(ARC = archaeology, CHM = chemistry, ECO = ecology, EVO = evolution and development, GEO = geology, MIC = microbiology, OPH = ophthalmology,

PAL = palaeontology) based on the scaled residuals (ε0). (b) Bootstrapped ε0 ranks by gender and career stage (ECR = early career researcher, MCR = mid-

career researcher, LCR = late-career researcher). (c) Bootstrapped (10,000 iterations) median ranks among the eight disciplines based on the m-quotient. (d)

Bootstrapped m-quotient ranks by gender and career stage. The vertical dashed line in all panels indicates the mid-way point across the entire sample (480�

2 = 240).

https://doi.org/10.1371/journal.pone.0257141.g005
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applied to the m-quotient, the residual nature of the ε-index makes it a more objective metric

for assessing relative rank, and the ε-index is less-sensitive than the m-quotient regarding the

innate rise of ranking as a researcher progresses through her/his career (Fig 4).

We reiterate that while the ε-index is an advance on existing approaches to rank researchers

according to their citation history, a single metric should never be the sole measure of a

researcher’s productivity or potential [39]. Nonetheless, the objectivity, ease of calculation, and

flexibility of its application argue that the ε-index is a needed tool in the quest to provide fairer

and more responsible [39, 40] initial appraisals of a researcher’s publication performance.

Supporting information

S1 Fig. Citation frequency versus citation value. Relationship between loge citation frequency

(y) and loge citation value (x) for 60 researchers within the discipline of ophthalmology. Each

light grey, dashed line is the linear (on the loge-loge scale) fit for each individual researcher.

The area under the fitted line (Arel) is shown for individual 32 (ID32; red horizontal hatch)

and individual 27 (orange vertical hatch).

(TIF)

S2 Fig. Example citation mass relative to years since first publication. Relationship between

a researcher’s citation mass (Arel; area under the citation frequency–value curve—see S1 Fig)

and loge years since first peer-reviewed publication (Y1) for an example sample of 60 microbi-

ology researchers in three different career stages: early career researcher (ECR), mid-career

researcher (MCR), and late-career researcher (LCR). The residuals (ε) for each researcher rela-

tive to the line of best fit (solid black line) indicate relative citation rank—researchers below

this line perform below expectation (relative to the sample), those above, above expectation.

Also shown are the lines of best fit for women (black dashed line) and men (red dashed line—

see also S3 Fig). Here we have also selected two researchers at random (1 female, 1 male) from

each career stage and shown their results in the inset table. The residuals (ε) provide a relative

rank from most positive to most negative. Also shown is each of these six researchers’ m-quo-

tient (h-index� number of years publishing).

(TIF)

Fig 6. Gender differences in the ε0-index and gender-debiased ε0-index. (a) Bootstrapped (10,000 iterations) ε0 ranks by gender and career stage

(ECR = early career researcher, MCR = mid-career researcher, LCR = late-career researcher); (b) bootstrapped debiased (i.e., calculating the scaled residuals

for each gender separately, and then ranking the combined dataset) ε0 ranks by gender and career stage.

https://doi.org/10.1371/journal.pone.0257141.g006
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S3 Fig. Gender-specific rankings. Gender-specific researcher ranks versus ranks derived from

the entire sample (in this case, the microbiology sample shown in S2 Fig). For women who

increased ranks when only compared to other women (negative residuals; top panel), the aver-

age increase was 1.50 places higher. For women with reduced ranks (positive residuals; top

panel), the average was 1.88 places lower. For men who increased ranks when only compared

to other men (negative residuals; bottom panel), or who declined in rank (positive residuals;

bottom panel), the average number of places moved were both 1.75 for both.

(TIF)

S4 Fig. m-quotient relative to years since first publication. Relationship between the m-quo-

tient and loge years publishing (t) for 480 researchers in eight different disciplines. There is a

weak, but statistically supported positive relationship (information-theoretic evidence

ratio = 68.7).

(TIF)

S5 Fig. Normality and homoscedasticity diagnostics for the archaeology sample. Residual

vs. fitted (a & b), scale-location (c & d), and normal quantile-quantile (e & f) plots for the rela-

tionship between loge Arel (area under the power-law relationship) and loge t (years publishing)

used to derive the ε-index (top row), and for the relationship between the h-index and t used

to derive the m-quotient (bottom row) for 60 researchers in the discipline of archaeology

(ARC). The Arel ~ loge(t) relationships show homoscedasticity (i.e., a random pattern in the

residual vs. fitted plots, and no trend in the scale-location plots) and a near-Normal distribu-

tion (points fall on the expected quantile-quantile line). In contrast, the h-index ~ t relation-

ships all show heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs. fitted plots, and a

positive trend in the scale-location plots) and a non-Normal distribution (points diverge con-

siderably more from the expected quantile-quantile line).

(TIF)

S6 Fig. Normality and homoscedasticity diagnostics for the chemistry sample. Residual vs.

fitted (a & b), scale-location (c & d), and normal quantile-quantile (e & f) plots for the relation-

ship between loge Arel (area under the power-law relationship) and loge t (years publishing)

used to derive the ε-index (top row), and for the relationship between the h-index and t used

to derive the m-quotient (bottom row) for 60 researchers in the discipline of chemistry

(CHM). The Arel ~ loge(t) relationships show homoscedasticity (i.e., a random pattern in the

residual vs. fitted plots, and no trend in the scale-location plots) and a near-Normal distribu-

tion (points fall on the expected quantile-quantile line). In contrast, the h-index ~ t relation-

ships all show heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs. fitted plots, and a

positive trend in the scale-location plots) and a non-Normal distribution (points diverge con-

siderably more from the expected quantile-quantile line).

(TIF)

S7 Fig. Normality and homoscedasticity diagnostics for the ecology sample. Residual vs. fit-

ted (a & b), scale-location (c & d), and normal quantile-quantile (e & f) plots for the relation-

ship between loge Arel (area under the power-law relationship) and loge t (years publishing)

used to derive the ε-index (top row), and for the relationship between the h-index and t used

to derive the m-quotient (bottom row) for 60 researchers in the discipline of ecology (ECO).

The Arel ~ loge(t) relationships show homoscedasticity (i.e., a random pattern in the residual

vs. fitted plots, and no trend in the scale-location plots) and a near-Normal distribution (points

fall on the expected quantile-quantile line). In contrast, the h-index ~ t relationships all show

heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs. fitted plots, and a positive trend in the
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scale-location plots) and a non-Normal distribution (points diverge considerably more from

the expected quantile-quantile line).

(TIF)

S8 Fig. Normality and homoscedasticity diagnostics for the evolution/development sam-

ple. Residual vs. fitted (a & b), scale-location (c & d), and normal quantile-quantile (e & f)

plots for the relationship between loge Arel (area under the power-law relationship) and loge t
(years publishing) used to derive the ε-index (top row), and for the relationship between the

h-index and t used to derive the m-quotient (bottom row) for 60 researchers in the discipline

of evolution and development (EVO). The Arel ~ loge(t) relationships show homoscedasticity

(i.e., a random pattern in the residual vs. fitted plots, and no trend in the scale-location plots)

and a near-Normal distribution (points fall on the expected quantile-quantile line). In contrast,

the h-index ~ t relationships all show heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs.

fitted plots, and a positive trend in the scale-location plots) and a non-Normal distribution

(points diverge considerably more from the expected quantile-quantile line).

(TIF)

S9 Fig. Normality and homoscedasticity diagnostics for the geology sample. Residual vs. fit-

ted (a & b), scale-location (c & d), and normal quantile-quantile (e & f) plots for the relation-

ship between loge Arel (area under the power-law relationship) and loge t (years publishing)

used to derive the ε-index (top row), and for the relationship between the h-index and t used

to derive the m-quotient (bottom row) for 60 researchers in the discipline of geology (GEO).

The Arel ~ loge(t) relationships show homoscedasticity (i.e., a random pattern in the residual

vs. fitted plots, and no trend in the scale-location plots) and a near-Normal distribution (points

fall on the expected quantile-quantile line). In contrast, the h-index ~ t relationships all show

heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs. fitted plots, and a positive trend in the

scale-location plots) and a non-Normal distribution (points diverge considerably more from

the expected quantile-quantile line).

(TIF)

S10 Fig. Normality and homoscedasticity diagnostics for the microbiology sample. Resid-

ual vs. fitted (a & b), scale-location (c & d), and normal quantile-quantile (e & f) plots for the

relationship between loge Arel (area under the power-law relationship) and loge t (years pub-

lishing) used to derive the ε-index (top row), and for the relationship between the h-index and

t used to derive the m-quotient (bottom row) for 60 researchers in the discipline of microbiol-

ogy (MIC). The Arel ~ loge(t) relationships show homoscedasticity (i.e., a random pattern in

the residual vs. fitted plots, and no trend in the scale-location plots) and a near-Normal distri-

bution (points fall on the expected quantile-quantile line). In contrast, the h-index ~ t relation-

ships all show heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs. fitted plots, and a

positive trend in the scale-location plots) and a non-Normal distribution (points diverge con-

siderably more from the expected quantile-quantile line).

(TIF)

S11 Fig. Normality and homoscedasticity diagnostics for the ophthalmology sample.

Residual vs. fitted (a & b), scale-location (c & d), and normal quantile-quantile (e & f) plots for

the relationship between loge Arel (area under the power-law relationship) and loge t (years

publishing) used to derive the ε-index (top row), and for the relationship between the h-index

and t used to derive the m-quotient (bottom row) for 60 researchers in the discipline of oph-

thalmology (OPH). The Arel ~ loge(t) relationships show homoscedasticity (i.e., a random pat-

tern in the residual vs. fitted plots, and no trend in the scale-location plots) and a near-Normal

distribution (points fall on the expected quantile-quantile line). In contrast, the h-index ~ t
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relationships all show heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs. fitted plots, and

a positive trend in the scale-location plots) and a non-Normal distribution (points diverge con-

siderably more from the expected quantile-quantile line).

(TIF)

S12 Fig. Normality and homoscedasticity diagnostics for the palaeontology sample. Resid-

ual vs. fitted (a & b), scale-location (c & d), and normal quantile-quantile (e & f) plots for the

relationship between loge Arel (area under the power-law relationship) and loge t (years pub-

lishing) used to derive the ε-index (top row), and for the relationship between the h-index and

t used to derive the m-quotient (bottom row) for 60 researchers in the discipline of palaeontol-

ogy (PAL). The Arel ~ loge(t) relationships show homoscedasticity (i.e., a random pattern in

the residual vs. fitted plots, and no trend in the scale-location plots) and a near-Normal distri-

bution (points fall on the expected quantile-quantile line). In contrast, the h-index ~ t relation-

ships all show heteroscedasticity (i.e., a ‘fan’ pattern in the residual vs. fitted plots, and a

positive trend in the scale-location plots) and a non-Normal distribution (points diverge con-

siderably more from the expected quantile-quantile line).

(TIF)
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Silva and Dobránszki. Scientometrics. 2018; 115(2):1125–30. https://doi.org/10.1007/s11192-018-

2683-0 PMID: 29628537

23. Abramo G, D’Angelo CA, Viel F. The suitability of h and g indexes for measuring the research perfor-

mance of institutions. Scientometrics. 2013; 97(3):555–70. https://doi.org/10.1007/s11192-013-1026-4

24. Bhattacharjee Y. Impact factor. Science. 2005; 309(5738):1181.
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