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Abstract: Amphibian populations globally are in decline. One great threat is the abstraction of water resources
that alter surface-water hydrology. Conservation actions aimed at restoring or manipulating surface water are
employed as a management tool, but empirical evidence on the effectiveness of these approaches is scarce. In
this systematic review, we summarized the global experience of manipulating water for amphibian conservation.
We explored examples of manipulating water to conserve amphibian species and communities. Approaches varied
in their frequency of implementation and in their success. Extending hydroperiod to match larval requirements
showed encouraging results, as did off-season drying to control predators. Spraying water into the environment
showed several potential applications, but successes were limited. Despite some promising interventions, we
identified few (n = 17) empirically supported examples of successful water manipulation to benefit amphibians.
It is unclear whether this stems from publication bias or if it is an artifact of language selection. However, manip-
ulating water shows some potential in amphibian conservation, particularly at sites with a proximal water source
and in regions where aridity is increasing due to climate change. Regardless of the scale of the intervention or
its perceived probability of success, high-quality reporting of empirical results will further understanding of how
water manipulations can benefit threatened amphibian populations.
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Manipulación del Agua para la Conservación de Anfibios

Resumen: Las poblaciones mundiales de anfibios están en declinación. Una gran amenaza es la extracción de los
recursos hídricos que alteran la hidrología superficial. Las acciones de conservación enfocadas en la restauración
o manipulación del agua superficial se emplean como herramientas de manejo, pero la evidencia empírica de
la efectividad de estas estrategias es escasa. En esta revisión sistemática resumimos la experiencia mundial de
la manipulación del agua para la conservación de anfibios. Exploramos ejemplos de la manipulación del agua
para conservar especies y comunidades de anfibios. Las estrategias variaron en la frecuencia de implementación
y en el éxito que tuvieron. La extensión del periodo hídrico para que cumpla con los requerimientos de las
larvas mostró resultados alentadores, así como lo hizo la sequía atemporal para controlar a los depredadores.
La aspersión de agua en el ambiente mostró varias aplicaciones potenciales, pero el éxito fue limitado. A pesar
de algunas intervenciones prometedoras, identificamos pocos (n = 17) ejemplos con respaldo empírico de la
manipulación exitosa del agua para el beneficio de los anfibios. Todavía no está claro si esto proviene de un
sesgo en las publicaciones o si es un artificio de la selección del lenguaje. Sin embargo, la manipulación del agua
muestra cierto potencial en la conservación de los anfibios, particularmente en sitios próximos a una fuente de
agua y en regiones en donde la aridez está incrementando debido al cambio climático. Sin importar la escala de
la intervención o la probabilidad de éxito percibida, la comunicación de alta calidad de los resultados empíricos
hará crecer el entendimiento de cómo la manipulación del agua puede beneficiar a las poblaciones amenazadas
de anfibios.
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Introduction

Amphibia (anurans, salamanders, and caecilians) is one
of the world’s most at-risk vertebrate classes—41% of
assessed species are threatened with extinction (IUCN
2019). Amphibians are more susceptible to climate-
driven niche shifts than birds or mammals (Rolland
et al. 2018), and changing climate might negatively af-
fect amphibians more strongly than other vertebrates
(Lawler et al. 2009). Anthropogenic alteration to natu-
ral hydrological regimes (Kupferberg et al. 2012), habi-
tat loss (Cushman 2006; Ferreira & Beja 2013), and ex-
otic species (Pyke & White 2000) rank among the top
threatening processes. Such threatening processes can
be additive or interactive; the strongest effects are pre-
dicted in global regions with the highest amphibian rich-
ness (Hof et al. 2011). The intensity of these processes
will likely increase as the climate changes (Walther et al.
2002).

Changing rainfall volume and patterns are projected
to affect amphibians at several points during their lifecy-
cle. Changes in the seasonal onset of rainfall will likely
affect the temporal initiation of breeding (Ludovisi et al.
2014), and contraction of annual rainfall patterns could
increase interspecific competition by changing the tem-
poral segregation between breeding events (Luna-Gomez
et al. 2017). In areas subject to aridification under cli-
mate change, reductions in hydroperiod will increase the
risk of recruitment failure due to pool desiccation (Chan-
dler et al. 2016), and increasing duration or severity of
droughts will increase the frequency of recruitment fail-
ure (Dodd 1994). Drying of landscapes can reduce pool
connectivity (Olson & Burton 2019), population con-
nectivity (Peterman et al. 2014), and ultimately regional
species richness (Lescano et al. 2015).

As the climate changes and the degree of water ab-
straction increases, the manipulation of hydrological
regimes for amphibian conservation might be neces-
sary (Greenwood et al. 2016). Programs focused on the
managed release of water for environmental purposes
are increasing worldwide (Kennen et al. 2018), but few
consider amphibians specifically within their mandates.

For example, in a review of 30 environmental-flow pro-
grams throughout Europe, amphibians were not men-
tioned (European Commission 2016). Despite this trend,
a range of hydrological manipulations have been imple-
mented specifically for amphibian conservation (reviews
by Shoo et al. [2011] and Smith et al. [2019]), the scope
and success of which vary considerably.

Our aim was to synthesize the global body of evidence
examining how manipulating water is used to increase
amphibian abundance, distribution, and recruitment. We
addressed the following questions: what forms of water
manipulation have been recommended or implemented
to improve amphibian abundance, distribution, and re-
cruitment; what forms of water manipulation have been
recommended or implemented to control undesirable
(typically, invasive) amphibians, and based on available
evidence, which manipulations are recommended for im-
plementation?

Methods

We employed the preferred reporting items for system-
atic review and meta-analysis protocols (PRISMA-P) (Mo-
her et al. 2015). We used ScienceDirect, Aquatic Sci-
ences and Fisheries Abstracts, and Web of Science. In
ScienceDirect, we searched for the terms “amphibian”
OR “frog” OR “toad” OR “salamander” OR “caecil-
ian” (present in the title) AND (“hydro∗” OR “water”
OR “flow”) AND (“manipulation” OR “environmental”
OR “artificial” OR “pump∗” OR “spray∗”) (present in
the title, abstract, or keywords). This search returned
184 results. We searched for the following terms in
the Aquatic Sciences and Fisheries Abstracts (ASFA)
database: ti(“amphibian” OR “frog” OR “toad” OR
“salamander” OR “caecilian”) AND (ab(“hydro∗” OR
“water∗” OR “flow”) AND (“manipulation” OR “envi-
ronmental” OR “artificial” OR “pump∗” OR “spray∗”))
OR (ti((“hydro∗” OR “water∗” OR “flow”) AND (“ma-
nipulation” OR “environmental” OR “artificial” OR
“pump∗” OR “spray∗”))) OR (if((“hydro∗” OR “water∗”
OR “flow”) AND (“manipulation” OR “environmental”
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OR “artificial” OR “pump∗” OR “spray∗”)))). This search
returned 461 results. Here, ti is title and ab is abstract,
but these abbreviations subsequently changed in the
Web of Knowledge search engine. Finally, we searched
Web of Science for TI = (“amphibian” OR “frog” OR
“toad” OR “salamander” OR “caecilian”) AND TS =
(“hydro∗” OR “water” OR “flow”) AND (“manipulation”
OR “environmental” OR “artificial” OR “pump∗” OR
“spray∗”). Here, TI is title and TS is topic. This search re-
turned 783 results. We thus accumulated a total of 1040
documents after removing duplicates. This protocol re-
quired an amphibian search term in the title, so our ini-
tial search could have missed records that did not focus
specifically on amphibians.

We developed inclusion criteria as follows. We
searched only English language studies. Temporal range
was not restricted. We included studies with a purpose-
ful, field-based manipulation of a wetting regime (i.e.,
with water from any source) that resulted in a change
in amphibian abundance, distribution, or recruitment.
This included manipulation for a purpose other than
conservation (e.g., stormwater treatment or water stor-
ages). The outcomes could have been identified through
changes in abundance, calling behavior, or recruitment
and could have been assessed over any period. Full-text
screening included reviewing the associated reference
list for additional inclusions. When we knew of addi-
tional studies that did not emerge from the review proto-
col, we included them.

Results

In addition to the following results, we identified 40 pa-
pers that explored amphibian use of created water re-
sources (e.g., sewage and stormwater storage ponds). Al-
though not involving a purposeful manipulation of water
resources, this information is relevant to the review and
is included in Supporting Information.

Water Manipulation to Benefit Amphibians

Hydroperiod has a strong influence on amphibian ecol-
ogy. Fully aquatic species require permanent aquatic
habitats, and species that breed early or later in the sea-
son or require multiple seasons to complete larval stages
can also benefit from waterbody permanence (Shulse
et al. 2010). In Canada, artificial pools are pumped
to maintain water permanence to support waterbirds.
These pools support lower densities of northern leopard
frog (Lithobates pipiens) larvae, but protect against lar-
val desiccation and produce larger frogs than vernal pool
control sites (Pouliot & Frenette 2010). Longer hydrope-
riods are also important for large species that typically
require more time to complete their larval development
than small species (Patterson & McLachlan 1989). Short

hydroperiods can stimulate short larval periods (Parris
2000) in which small metamorphs emerge (Johansson
et al. 2010; Bekhet et al. 2014; Charbonnier & Vonesh
2015); such hydroperiods are associated with poor fit-
ness and low lifetime reproductive output (Smith 1987).
Hydroperiods shorter than the minimum larval require-
ment for a given species result in complete reproductive
failure, in which all larvae dry in situ.

Permanent pools can have a higher risk of preda-
tion, can be more likely to support fish and crustacean
predators (Nystrom et al. 2002), and can have higher
densities of invertebrate predators (Lowe et al. 2015)
than vernal pools. Fish-free vernal pools with long hy-
droperiods can support greater species richness (da Silva
et al. 2011), higher abundance of egg masses (Baldwin
et al. 2006; Veysey et al. 2011), and more metamor-
phosing juveniles (Semlitsch & Gibbons 1985; Pechmann
et al. 1989) than short-hydroperiod pools that contain
fish.

Increasing Hydroperiod through Pumping

In several instances, manipulating water resources to
increase hydroperiod in vernal pools has successfully
supported amphibian populations (Smith et al. 2019).
Increasing hydroperiod can improve population viabil-
ity by increasing recruitment (Hamer et al. 2016). For
example, models of the eastern narrow-mouthed toad
(Gastrophryne carolinensis) show that reproductive fail-
ure and extirpation arise mainly from insufficient hy-
droperiod (Salice 2012). In North America, solar- and
wind-powered pumps, among other actions, are used
to maintain water level in breeding pools used by
the Chiricahua leopard frog (Lithobates chiricahuen-
sis) (McCaffery & Phillips 2012, 2015). This work has
increased populations and range size, but the role of
pumping cannot be disentangled from the other inter-
ventions. Similarly, water pumped into a vernal breed-
ing pool to prevent desiccation prior to metamorpho-
sis resulted in successful recruitment of the critically
endangered dusky gopher frog (Rana sevosa), which
was at risk of extirpation following repeated recruit-
ment failure (Seigel et al. 2006). In Sydney Olympic
Park, Australia, treated stormwater is pumped into mul-
tiple ponds to extend hydroperiod and has contributed
to increased recruitment, population size, and distri-
bution of green and golden bell frog (Litoria aurea)
(Darcovich & O’Meara 2008).

Beaver (genus Castor) dams can create lentic habitats
suitable for amphibians. In Germany, beaver dams
are linked to greater amphibian species richness than
unobstructed proximate streams (Lüscher et al. 2007),
and in Canada, 3 species of amphibian bred in beaver
dams, but not in nearby free-flowing streams (Stevens
et al. 2007). In drier regions, such as the Adirondack
Mountains (U.S.A.), beaver dams create a mosaic of
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heterogeneous hydroperiods, including both ephemeral
and permanent aquatic habitats, and produce 23–
69 times more metamorphs than comparable vernal
breeding sites (Karraker & Gibbs 2009).

Dam Releases to Increase Hydroperiod

River regulation alters hydrological regimes, including
timing, frequency, and duration of flow pulses and the
extent of inundation (Bunn & Arthington 2002; Eskew
et al. 2012). Operational flows are released from dams
to manage reservoir depth, transfer water between stor-
age areas, and deliver irrigation flows, but might not be
timed to emulate natural flow patterns and can nega-
tively affect amphibians (Kupferberg et al. 2012). Oper-
ational releases can disadvantage amphibians in several
ways. Flows that remain in channel encourage the de-
velopment of a homogenous single channel (Hazell et al.
2003), which could remove microhabitats important for
amphibian recruitment (Manenti et al. 2009), and high-
energy flows can scour eggs and larvae from the reach
(Kupferberg 1996). Hypolimnetic flows, where deep,
cold water is released, are particularly harmful because
they alter thermal regimes and can increase mortality
(Bury 2008), delay metamorphosis (Rogell et al. 2011),
and reduce body condition at metamorphosis (Wheeler
et al. 2015).

Releases aimed at eliciting positive ecological out-
comes (often termed environmental flows) represent a
potentially attractive technique for conservation because
they can typically be delivered using existing infrastruc-
ture and interventions can target multiple taxa simulta-
neously. Using environmental flows to increase hydro-
logical heterogeneity across the landscape appears more
promising than channel flows. Inundation events tend
to enrich local species diversity (Real et al. 1993) and
increase aquatic connectivity. One model suggests that
releasing regular flow pulses, timed to emulate seasonal
variation, would benefit the California red-legged frog
(Rana aurora draytonii) and control American bullfrog
(Lithobates catesbeianus),(Doubledee et al. 2003), but
we found no evidence of its implementation.

Spraying Water

Without specific adaptations to minimize cutaneous wa-
ter loss, most amphibians suffer rapid desiccation in dry
conditions. Amphibians display behavioral adaptation
to minimize water loss during dry periods (O’Connor
& Tracy 1992), and in some instances foraging and
courtship behavior can cease (Feder 1983). In these
instances, spraying water can increase foraging and
reproduction opportunities (Shoo et al. 2011). For ex-
ample, experimental spraying of Bibron’s toadlet (Pseu-
dophryne bibroni) (a terrestrial nest breeder) increased
substratum water potential, resulting in increased calling

behavior (157 calling nights compared to 48 in unwetted
nests), successful mating events (5 cf. 1), and egg survival
(95% cf. almost complete mortality) (Mitchell 2001).
Spraying has been recommended to protect the microen-
demic nest breeder northern corroboree frog (Pseu-
dophryne pengilleyi) from extinction due to climate
change, but has not been implemented (Scheele et al.
2012).

Spraying can also be useful to increase dispersal
and population connectivity. During periods of drought,
the frosted flatwoods salamander (Ambystoma cingu-
latum) reduces breeding migrations (Palis et al. 2006).
High rainfall events increase colonization between prox-
imate pools (Cayuela et al. 2012), and during tor-
rential rain events, even fully aquatic frogs migrate
overland (Lobos & Jaksic 2005). It is possible that land-
scape spraying could decrease landscape resistance, re-
sulting in increased population resilience (Brown &
Kodric-Brown 1977). This approach is especially promis-
ing for species that have spatial genetic population
structure over as little as tens of meters (Sunny et al.
2014).

Perhaps the best-documented example of spraying for
amphibian conservation is the Kihansi spray toad (Nec-
tophrynoides asperginis). This microendemic species
was restricted to 40,000 m2 of spray zone at the base
of the Kihansi Falls in Tanzania. The activation of a hy-
droelectric plant in 2000 reduced or removed spray,
prompting the installation of gravity-fed sprinkler system
to recreate the microhabitat (paired with captive breed-
ing and reintroduction). In the first 2 years of operation,
the wild population grew from 11,385 to 20,989 (Chan-
ning et al. 2006). Thereafter, the populations dwindled
(Nahonyo et al. 2017), and the species is now consid-
ered extinct in the wild (IUCN 2019). Failure of the in-
terventions to stabilize the population was likely due to
a combination of effects, including a reduction in the in-
tensity and area of sprayed habitat, movement of safari
ants (Dorylus sp.) into the drier areas (Channing et al.
2006), chytridiomycosis (Batrachochytrium dendroba-
tidis) (Makange et al. 2014), and trophic shifts within
the spray zone that reduced arthropod prey availability
(Zilihona et al. 1998).

Spraying Repurposed Water

In Pennsylvania (U.S.A.), sprinklers that applied secon-
darily treated, chlorinated wastewater effluent to 150 ha
of forested land increased surface water area by 252%,
doubling the number of ponds. Ponds receiving wastew-
ater had thick blankets of duckweed (Lemna sp.), poorer
water quality, fewer egg masses, and lower hatching suc-
cess and larval survival than control ponds (Laposata
& Dunson 2000). In planning for treated sewage deliv-
ery, the authors recommend spraying over the target
area and allowing infiltration through the soil to reduce
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nutrients, pH, and toxin concentrations rather than
spraying directly into the target pools or allowing over-
land flow.

Drying to Control Predators

Permanent pools tend to contain the highest predator
densities (Wellborn et al. 1996), and intermittent drying
can reduce densities of obligate aquatic predators, such
as fish or crustaceans (Smith et al. 2019). The presence of
fish is widely associated with amphibian absence (Julian
et al. 2006; Arkle & Pilliod 2015) and reduced species
richness (Amburgey et al. 2013; Jeliazkov et al. 2014).
For example, the introduction of mosquitofish (Gambu-
sia holbrooki) resulted in complete larval mortality of
fire salamanders (Salamandra salamandra) (Segev et al.
2009). Similarly, although the Columbia spotted frog laid
more eggs in permanent pools, survival to metamorpho-
sis was 3 times higher in semipermanent pools than in
permanent pools because fish were absent in the former
(McCaffery et al. 2014). Not all amphibian species are
affected by fish. For example, in Italy salmonid predators
inhibited breeding in 3 species of frog, but not the Euro-
pean toad (Bufo bufo), which is less palatable (Manenti
& Pennati 2016).

Observational and modeling studies suggest drying is
an effective tool for controlling introduced fish, espe-
cially when native amphibians are not present (Maret
et al. 2006). In Michigan (U.S.A.), natural drying removes
predatory fish, reducing predation and increasing am-
phibian species richness (Werner et al. 2007). Likewise,
natural drying in streamside pools in Kentucky (U.S.A.)
removes green sunfish (Lepomis cyanellus), resulting in
higher rates of streamside salamander (Ambystoma bar-
bouri) oviposition (136.6 eggs/m2 compared with 32.6
eggs/m2 in pools with fish) (Kats & Sih 1992). In Eng-
land, drying an urban pool successfully removed fish and
improved recruitment in the crested newt (from 76 lar-
vae to 396 in the year following drying) (Cooke 1997). In
Sydney, Australia, draining to remove mosquitofish prior
to the breeding season increased occupancy by green
and golden bell frog larvae (O’Meara & Darcovich 2008).

Laboratory studies show that desiccation can con-
trol some amphibian pathogens (e.g., B. dendrobatidis)
(Johnson et al. 2003), but not others (e.g., ranavirus FV3)
(Nazir et al. 2012). Field-based studies are required to
confirm and quantify the viability of drying to manage
amphibian diseases.

Manipulating Water to Control Undesirable Amphibians

Water infrastructure can provide refuge, transport corri-
dors, and stepping stones that facilitate movement and
occupancy of exotic amphibians (Brainwood & Burgin
2009; Chester & Robson 2013; Davies et al. 2013; Shine
2014). In these systems, the strategic drying of aquatic

resources can be used to restrict the spread of exotic am-
phibians (Smith et al. 2019). Population models provide
support for pool drying as an effective technique to con-
trol populations of American bullfrog (Maret et al. 2006)
and to reduce the ability of invasive cane toads (Rhinella
marina) to cross inhospitable habitat patches in arid re-
gions of Australia (Tingley et al. 2013). This approach is
most promising during dry seasons or in regions where
access to water is limited (Child et al. 2009). Altering the
design of farming infrastructure from bore-fed, earthen
dams to tanks or troughs (Feit et al. 2015) and targeting
dry-season aggregations at pools (Reynolds & Christian
2009) could supplement this approach.

Although models support strategic drying to disrupt
invasive amphibians, there are several factors that in-
fluence successful implementation. In Belgium, experi-
ments aimed at controlling the abundance of the Ameri-
can bullfrog included a selective, dry-down treatment in
which selected pools were drained and seined to remove
vertebrate life. Draining alone had no impact on larval
densities in subsequent years, indicating that this process
is unlikely to produce positive results when reinvasion
pathways are present (Louette 2012). Lobos and Jaksic
(2005) hypothesized that pond drying stimulated mass
migration events in African clawed frog (Xenopus laevis)
in Chile.

Discussion

There are various management techniques available
to manipulate water resources to influence amphib-
ian reproduction, recruitment, movement, and survival.
Despite an increasing need for effective amphibian-
conservation interventions, we detected only 17 pub-
lished, field-based interventions of this type (Table 1). It
is unlikely that the modest number of studies identified
accurately reflects the extent or range of interventions
deployed.

Our systematic review protocol targeted only English
language publications, potentially creating an a priori lan-
guage bias in our results. This hypothesis is supported
by examining a global distribution of study sites. If lan-
guage bias is not relevant, one might expect a some-
what scattered distribution of relevant studies across the
globe. Instead, the studies were almost exclusively in
countries where English is an official language. Further-
more, these results likely reflect a publication bias on
several fronts: flow manipulation could be implicit but
not presented as the main aim of the study or within
the publication title or abstract; interventions are proba-
bly deployed by organizations that do not prioritize pub-
lication in the peer-reviewed literature; budget and lo-
gistical constraints could preclude sufficient replication
or monitoring to infer a strong relationship resulting in
low publication rates; and there could be a reluctance
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to publish null results due to a perceived failure of the
intervention (Fanelli 2012). Regardless of the mecha-
nism, we are concerned by the obfuscation of these
interventions. We strongly advocate for increased peer-
reviewed publication of hydrological manipulations, re-
gardless of the outcome. We similarly advocate for im-
proved labeling and division of gray literature to help
distinguish innovative approaches and notable outcomes
from more routine monitoring reports.

Given the few published studies, attempt to assess
the strength of different approaches objectively through
meta-analysis is not possible. This is further complicated
because 7 of the 17 studies combined hydrological ma-
nipulations with other conservations techniques (e.g.,
revegetation, fencing, ex situ breeding, and reintroduc-
tion). As such, isolating the effect size of hydrological
manipulations is not yet possible. Instead, we summarize
our main findings without quantitative analysis.

The most broadly implemented conservation tech-
nique we discovered was altering existing habitats to in-
crease hydroperiod. This was successfully implemented
across a range of spatial scales. Techniques included
creating habitats (Rannap et al. 2009; Tournier et al.
2017), excavating to increase pool depth (Cooke 1997;
Rannap et al. 2009), lining ponds with an impervious
liner (O’Meara & Darcovich 2008; Green et al. 2013;
Means et al. 2016), and installing dams or regulators
(Pouliot & Frenette 2010; Deoniziak et al. 2017; Hossack
2017). Amphibian responses to these alterations were
generally positive, although they were often spatially and
temporally variable. For example, Green et al. (2013)
detected production of postmetamorphic frogs in only
one of the 4 treatments, and Deoniziak et al. (2017) de-
tected improved breeding response only in natural vernal
habitats proximate to the intervention sites. In several
studies, experimental results were explained by prox-
imity to existing populations (e.g., Stevens et al. 2002)
and the dispersal capacity of each species (e.g., Beebee
1997). The most successful conservation outcomes in-
corporated dispersal pathways in the design (e.g., Ran-
nap et al. 2009; Darcovich & O’Meara 2008). Thus, we
recommend site alteration to increase hydroperiod as a
management strategy, although factors such as proxim-
ity to source populations, landscape resistance, and dis-
persal capacity of the target population will affect the
amphibian response.

Four studies pumped water to create breeding habitats
free from predators or to prolong hydroperiod to allow
for completion of metamorphosis. Amphibian response
to pumping was consistently positive; both range and
abundance expanded (Darcovich & O’Meara 2008; Mc-
Caffery et al. 2014) and recruitment success increased
(Seigel et al. 2006). We therefore recommend this inter-
vention, particularly in discrete, vernal pools.

Releasing water from impoundments into rivers (en-
vironmental flow) is an attractive approach to conser-

vation. It requires little additional infrastructure, can be
designed to mimic natural climatic cycles, and can be de-
ployed to benefit several taxa simultaneously. We could
not identify an environmental-flow program with con-
servation targets specific to amphibians, but we identi-
fied potential aspects of flow delivery (for operational
or environmental purposes) that might have negative
impacts on stream-dwelling amphibians via high-energy
flows that disrupt habitat and juvenile life stages. Theo-
retically, release schedules could be designed to recreate
timely inundation, but we identified only one modeled
examination of this question (Doubledee et al. 2003).

Spraying water into the landscape can reduce evapo-
rative water loss in amphibians. There is some evidence
spraying increases breeding success for terrestrial nest
breeders, and it could increase opportunities for foraging
and reduce landscape resistance. However, increasing
soil moisture could also increase the likelihood of disease
transmission (Beyer et al. 2015) and enhance dispersal
of non-native amphibians (Cohen & Alford 1996; Child
et al. 2009). There is little empirical evidence to support
spraying to reconstruct habitats. Poor water quality can
influence outcomes for amphibians, and there was lit-
tle evidence of positive amphibian responses following
spraying with treated sewage (Laposata & Dunson 2000).

Targeted drying has been successfully implemented on
several occasions to remove predators (especially fish).
We recommend this approach, especially where existing
infrastructure exists to allow draining and refilling of the
site. Models support the removal of dry-season aquatic
refugia as a control measure for exotic amphibian dis-
persal. Although theoretically valuable, this approach has
not been implemented, and there is little empirical evi-
dence to support its use.

Despite the promising nature of hydrological manipu-
lation as a conservation tool, unexpected negative out-
comes have also been reported, and we urge caution
during planning. For example, although Cooke (1997)
observed a 5-fold increase in crested newt recruitment
in the season following intervention, recruitment was
lower during the final 3 years of monitoring than before
the intervention. Similarly, although Hossack (2017) ob-
served an increase in Colombia spotted frog, there was
also a rapid reduction in arboreal toad numbers. In the-
ory, negative outcomes are reduced by carefully match-
ing interventions to the biological requirements of the
target species and the landscape context of the interven-
tion site. Robust approaches have generally applied inter-
ventions in a mosaic pattern (e.g., Rannap et al. 2009),
which spreads the risk relative to a single site (e.g.,
Cooke 1997). Unexpected outcomes should be fully and
accurately reported.

Overall, we conclude that manipulating water is a
promising management tool in amphibian conserva-
tion, particularly where aridity increases due to cli-
mate change. The main problem we found was the
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lack of sufficient empirical evidence to evaluate the suc-
cess of these approaches confidently. Nonetheless, 2
approaches warrant recommendation. First, the exten-
sion of hydroperiod in vernal pools is the most sup-
ported approach and has been implemented successfully
to achieve amphibian conservation targets. Second, im-
plementing drying to control aquatic predators is reason-
ably well supported by the available evidence. Regardless
of the approach taken, interventions must be tailored
to meet the ecological needs of the target species. Our
strongest recommendation is that future interventions
be sufficiently funded to include the monitoring and as-
sessment of the intervention and that the results be re-
ported in a discoverable manner regardless of format or
perceived success of the intervention.
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