Genetics to the rescue

27 05 2025

Procreating with a relative is taboo in most human societies for many reasons, but they all stem from avoiding one thing in particular — inbreeding increases the risk of genetic disorders that can seriously compromise a child’s health, life prospects, and survival.

While we all inherit potentially harmful mutations from our parents, the effects of these mutations are often partially or completed masked if we possess two alternative variants of a gene — one from each parent. However, the children of closely related parents are more likely to inherit the same copies of harmful mutations. This is known as ‘inbreeding depression’. 

But inbreeding depression can happen in any species, with the risk increasing as populations become smaller. Because many species are rapidly declining in abundance and becoming isolated from one another predominantly due to habitat destruction, invasive species, and climate change, the chances of inbreeding are also increasing.

Not only are such populations more susceptible to random disturbances, they are also victim of reduced population growth rates arising from inbreeding depression. This produces what is generally known as the ‘extinction vortex‘ — the smaller your population, the more you inbreed and produce sub-optimal offspring, leading to even more population decline and eventually extinction.

One emergency intervention that can ‘rescue’ such inbred populations from extinction (at least in the short term) is to introduce unrelated individuals from other populations in an attempt to increase genetic diversity, and therefore, the rate of population growth. While somewhat controversial because some fear introducing diseases or eroding local-area specialisation (so-called ‘outbreeding depression’), the risk-benefit ratio of this ‘genetic rescue’ is now widely considered to be worth it

Read the rest of this entry »




Error-free genetic repositories: case of amphibians

18 08 2020

In our new study, we curated > 39,000 amphibian mitochondrial DNA (mtDNA) sequences from GenBank, identified > 2,000 sequencing and taxonomic errors, and published the quality-checked records as a curated dataset with an automated workflow in R. High-quality genetic data should help quantify and protect the diversity of the most threatened vertebrate group on Earth.

frogs

Upper left: species of Boophis from Andasibe, Madagascar. Upper right: Dendropsophus anceps from State of Rio de Janeiro, Brazil. Lower left; Dendropsophus bipunctatus from State of Rio de Janeiro, Brazil. Lower right: Bufo bufo from Gelderland, The Netherlands. All images from the author.

Scientists from a broad range of biological disciplines use genetic information like DNA sequences to test ecological and evolutionary hypotheses. Critically, genetics are today essential for naming species and therefore quantifying biodiversity, as well as determining where species live and how many individuals of a species occur in the wild.

Researchers are routinely asked, and more recently frequently required, by scientific journals to submit their DNA sequences to GenBank (among other public repositories of genetic data) as a requirement for publishing a paper. Although GenBank provides some quality controls (e.g., to filter sequences with bacterial contaminants and those from other kingdoms), authors are responsible for the quality of their genetic data and have full freedom to assign these to species in the taxonomy database of GenBank. Notably, once sequences have been deposited in GenBank, records are rarely updated in light of identified errors often resulting from taxonomic progress.

Two important notions emerge from the former status quo: Read the rest of this entry »