The Effective Scientist

22 03 2018

final coverWhat is an effective scientist?

The more I have tried to answer this question, the more it has eluded me. Before I even venture an attempt, it is necessary to distinguish the more esoteric term ‘effective’ from the more pedestrian term ‘success’. Even ‘success’ can be defined and quantified in many different ways. Is the most successful scientist the one who publishes the most papers, gains the most citations, earns the most grant money, gives the most keynote addresses, lectures the most undergraduate students, supervises the most PhD students, appears on the most television shows, or the one whose results improves the most lives? The unfortunate and wholly unsatisfying answer to each of those components is ‘yes’, but neither is the answer restricted to the superlative of any one of those. What I mean here is that you need to do reasonably well (i.e., relative to your peers, at any rate) in most of these things if you want to be considered ‘successful’. The relative contribution of your performance in these components will vary from person to person, and from discipline to discipline, but most undeniably ‘successful’ scientists do well in many or most of these areas.

That’s the opening paragraph for my new book that has finally been release for sale today in the United Kingdom and Europe (the Australasian release is scheduled for 7 April, and 30 April for North America). Published by Cambridge University Press, The Effective ScientistA Handy Guide to a Successful Academic Career is the culmination of many years of work on all the things an academic scientist today needs to know, but was never taught formally.

Several people have asked me why I decided to write this book, so a little history of its genesis is in order. I suppose my over-arching drive was to create something that I sincerely wish had existed when I was a young scientist just starting out on the academic career path. I was focussed on learning my science, and didn’t necessarily have any formal instruction in all the other varied duties I’d eventually be expected to do well, from how to write papers efficiently, to how to review properly, how to manage my grant money, how to organise and store my data, how to run a lab smoothly, how to get the most out of a conference, how to deal with the media, to how to engage in social media effectively (even though the latter didn’t really exist yet at the time) — all of these so-called ‘extra-curricular’ activities associated with an academic career were things I would eventually just have to learn as I went along. I’m sure you’ll agree, there has to be a better way than just muddling through one’s career picking up haphazard experience. Read the rest of this entry »





The state of global biodiversity — it’s worse than you probably think

24 01 2020

Chefurka biomass slide

I often find myself in a position explaining to non-professionals just how bad the state of global biodiversity really really is. It turns out too that even quite a few ecologists seem to lack an appreciation of the sheer magnitude of damage we’ve done to the planet.

The loss of biodiversity that has occurred over the course of our species’ time on Earth is staggering. This loss is now truly planetary in scale and caused by human actions, albeit the severity of which is unequally distributed across the globe1. While Sandra Díaz and company recently summarised the the extent of the biodiversity crisis unfolding1 well in their recent synopsis of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)2 report, I’m going to repeat some of the salient summary statements here, and add a few others. Read the rest of this entry »





Heat tolerance highly variable among populations and species

14 01 2020

Many ecological studies have examined the tolerance of terrestrial wildlife to high and low air temperatures over global scales (e.g., 1, 2, 3). This topic has been boosted in the last two decades by ongoing and predicted impacts of climate change on biodiversity (see summary of 2019 United Nation’s report here and here).

However, it is unfortunate that for most species, studies have measured thermal tolerance from a single location or population. Researchers interested in global patterns of thermal stress collect those measurements from the literature for hundreds to thousands of species [recently compiled in the GlobTherm database] (4), and are therefore often restricted to analysing one value of thermal tolerance per species.

CB_FunctionalEcology_jan2020_Photo

Three of the 15 species of Iberian lacertids sampled in our study of thermal tolerance (9), including the populations of Algerian psammodromus (Psammodromus algirus), Geniez’s wall lizard (Podarcis virescens) and Western green lizard (Lacerta bilineata) sampled in Navacerrada (Madrid), Fuertescusa (Cuenca) and Moncayo (Soria), respectively. Photos by S. Herrando-Pérez

Using this approach, ecologists have concluded that cold tolerance is far more variable than heat tolerance across species from the tropics to the boreal zone (5-8). Consequently, tolerance to heat stress might be a species trait with limited potential to change in response to global warming compared to cold tolerance (5). Read the rest of this entry »





Cartoon guide to biodiversity loss LVIII

4 01 2020

The first set of six biodiversity cartoons for 2020. This special, Australia-is-burning-down-themed set is dedicated to Scott Morrison and his ilk. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »





Influential conservation ecology papers of 2019

24 12 2019

Bradshaw-Waves breaking on rocks Macquarie Island
As I’ve done for the last six years, I am publishing a retrospective list of the ‘top’ 20 influential papers of 2109 as assessed by experts in F1000 Prime (in no particular order). See previous years’ lists here: 20182017, 20162015, 2014, and 2013.

 

 

 

 

 

 

Read the rest of this entry »





Does high exposure on social and traditional media lead to more citations?

18 12 2019

social mediaOne of the things that I’ve often wondered about is whether making the effort to spread your scientific article’s message as far and wide as possible on social media actually brings you more citations.

While there’s more than enough justification to promote your work widely for non-academic purposes, there is some doubt as to whether the effort reaps academic awards as well.

Back in 2011 (the Pleistocene of social media in science), Gunther Eysenbach examined 286 articles in the obscure Journal of Medical Internet Research, finding that yes, highly cited papers did indeed have more tweets. But he concluded:

Social media activity either increases citations or reflects the underlying qualities of the article that also predict citations …

Subsequent work has established similar positive relationships between social-media exposure and citation rates (e.g., for 208739 PubMed articles> 10000 blog posts of articles published in > 20 journals), weak relationships (e.g., using 27856 PLoS One articlesbased on 1380143 articles from PubMed in 2013), or none at all (e.g., for 130 papers in International Journal of Public Health).

While the research available suggests that, on average, the more social-media exposure a paper gets, the more likely it is to be cited, the potential confounding problem raised by Eysenbach remains — are interesting papers that command a lot of social-media attention also those that would garner scientific interest anyway? In other words, are popular papers just popular in both realms, meaning that such papers are going to achieve high citation rates anyway?

Read the rest of this entry »





Did people or climate kill off the megafauna? Actually, it was both

10 12 2019

When freshwater dried up, so did many megafauna species.
Centre of Excellence for Australian Biodiversity and Heritage, Author provided

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Earth is now firmly in the grips of its sixth “mass extinction event”, and it’s mainly our fault. But the modern era is definitely not the first time humans have been implicated in the extinction of a wide range of species.

In fact, starting about 60,000 years ago, many of the world’s largest animals disappeared forever. These “megafauna” were first lost in Sahul, the supercontinent formed by Australia and New Guinea during periods of low sea level.

The causes of these extinctions have been debated for decades. Possible culprits include climate change, hunting or habitat modification by the ancestors of Aboriginal people, or a combination of the two.


Read more: What is a ‘mass extinction’ and are we in one now?


The main way to investigate this question is to build timelines of major events: when species went extinct, when people arrived, and when the climate changed. This approach relies on using dated fossils from extinct species to estimate when they went extinct, and archaeological evidence to determine when people arrived.


Read more: An incredible journey: the first people to arrive in Australia came in large numbers, and on purpose


Comparing these timelines allows us to deduce the likely windows of coexistence between megafauna and people.

We can also compare this window of coexistence to long-term models of climate variation, to see whether the extinctions coincided with or shortly followed abrupt climate shifts.

Data drought

One problem with this approach is the scarcity of reliable data due to the extreme rarity of a dead animal being fossilised, and the low probability of archaeological evidence being preserved in Australia’s harsh conditions. Read the rest of this entry »





Adult disguises

2 12 2019

Skilled ornithologists can tell the age of a bird by the look of its feathers. But many species are advancing the moult of their first adult plumage in response to global warming, and the youngsters look more similar to the adults now than two centuries ago.

R Graphics Output

The clothes don’t make the (wo)man, but how we dress sends out a lot of information about our tastes, emotional state, or financial situation. In nature, where species have evolved to exploit all kinds of physical and chemical cues, visual communication determines a wealth of feeding and reproductive strategies (1).

Birds are familiar to all of us by the beauty and variety of their plumages (see extreme examples commented by David Attenborough here, here and here), which bird fans use to tell juveniles from males, males from females and breeders from migrants. In evolutionary time, birds have gradually moved away from tree-bark browns and tree-leaf greens and, due to functional requirements, modern feathers only span about one third of the colours these animals can perceive (2). They obtain yellows, oranges, and reds from carotenoid-containing food, dark colours from melanin pigment of own synthesis, and the so-called structural colours depend on how light reflects on the barbs of the feathers (2).

Plumage, across its entire range of designs, is a factor crucial to the life history of our feathery friends and, consequently, to evaluate how and how much anthropogenic climate change is impacting them (3).

Plumage and temperature

We know that mammals and birds are modifying their fur and feathers to optimise camouflage against landscapes with more or less snow (4), but less-known are the implications of climate change for feather moulting. Read the rest of this entry »