Tenure-Track Professorship in Conservation and Development

26 01 2023

The Faculty for Mathematics and Natural Sciences of Humboldt-Universität zu Berlin (HU Berlin), Geography Department, has an open position for a tenure-track professorship in Conservation and Development.

Starting as soon as possible. This is a Junior Professorship (W1 level, 100%) with a tenure track to a permanent professorship (W2 level, 100%). To verify whether the individual performance meets the requirements for permanent employment, an evaluation process will be opened not later than four years of the Junior Professorship. Tenure track professors at the HU Berlin are expected to do research and teaching, as well as to be active in university administration, in the promotion of young scientists, and in acquiring leadership and management skills. The concrete requirements out of the framework catalogue will be specified in the course of the appointment process.

We seek candidates with an outstanding research record in biodiversity conservation and sustainable development, with experience in working in the Global South. Successful candidates are rooted in conservation science and must have a doctoral degree in conservation science, development geography, environmental science, political ecology or related fields. We expect a demonstrated ability to work interdisciplinary, across the social and natural sciences to understand conservation challenges and and develop solutions.

We seek individuals with the vision, leadership and enthusiasm to build an internationally recognised research program. We expect collaboration with other research groups at the department, at HU Berlin and beyond, and a commitment to promoting a positive, diverse, and inclusive institutional culture. Experience in translating conservation science into action and/or work at the science/policy interface are beneficial.

We offer a tenure-track position in an international, young and vibrant department with an excellent scientific and education track record. The successful candidate will join an interdisciplinary group of faculty focused on human-environment relations, global change, and sustainability.

The salary will be according to W1 level, and after successful tenure evaluation W2 level. Employment at HU Berlin offers all benefits of the German public service system, including health insurance, an attractive pension plan, and social benefits.

Read the rest of this entry »




How to contact a potential PhD supervisor

1 04 2015

It’s probably fair to say that most university-based academics regularly receive requests from people around the world wishing to be considered as prospective postgraduate students (mostly PhD). I probably receive an average of 3-4 such requests per week via e-mail, as do many of my collaborators. Unfortunately for those making the inquiry, I trash most of them almost immediately.

It’s not that I’m a (complete) bastard; rather, it seems that few of these people have given very much thought to their requests, or how they might be perceived. Indeed, I’d say that about 90% of them are one-liners that go something like this:

Dear Professor,

I wish to write you to seek for supervision towards PhD degree. If you not intersted, assist me to get other supervisor.

XX

Yes, with all the bad English, impoliteness and lack of any detail, these types of requests get deleted even before I get to the close. One recent e-mail even addressed me as “Dear Sir Hubert Wilkins …”. Sometimes, you really must wonder how some people have enough common sense even to turn on the computer.

I’m not naïve enough to think that most of these are serious requests for supervision; indeed, many of them seem to be desperate cries for help to assist people to quit their country of origin, for reasons that have nothing to do with academic pursuits.

So for those people who are genuinely seeking academic supervision, and in a vain attempt to stem the number of pointless e-mails I receive (yeah, right), I offer some tips on how to contact a potential PhD supervisor: Read the rest of this entry »





School finishers and undergraduates ill-prepared for research careers

22 05 2014

bad mathsHaving been for years now at the pointy end of the educational pathway training the next generation of scientists, I’d like to share some of my observations regarding how well we’re doing. At least in Australia, my realistic assessment of science education is: not well at all.

I’ve been thinking about this for some time, but only now decided to put my thoughts into words as the train wreck of our current government lurches toward a future guaranteeing an even stupider society. Charging postgraduate students to do PhDs for the first time, encouraging a US-style system of wealth-based educational privilege, slashing education budgets and de-investing in science while promoting the belief in invisible spaghetti monsters from space, are all the latest in the Fiberal future nightmare that will change our motto to “Australia – the stupid country”.

As you can appreciate, I’m not filled with a lot of hope that the worrying trends I’ve observed over the past 10 years or so are going to get any better any time soon. To be fair though, the problems go beyond the latest stupidities of the Fiberal government.

My realisation that there was a problem has crystallised only recently as I began to notice that most of my lab members were not Australian. In fact, the percentage of Australian PhD students and post-doctoral fellows in the lab usually hovers around 20%. Another sign of a problem was that even when we advertised for several well-paid postdoctoral positions, not a single Australian made the interview list (in fact, few Australians applied at all). I’ve also talked to many of my colleagues around Australia in the field of quantitative ecology, and many lament the same general trend.

Is it just poor mathematical training? Yes and no. Australian universities have generally lowered their entry-level requirements for basic maths, thereby perpetuating the already poor skill base of school leavers. Why? Bums (that pay) on seats. This means that people like me struggle to find Australian candidates that can do the quantitative research we need done. We are therefore forced to look overseas. Read the rest of this entry »





Global Ecology postgraduate opportunities

12 08 2012

I should have published these ages ago, but like many things I have should have done earlier, I didn’t.

I also apologise for a bit of silence over the past week. After coming back from the ESP Conference in Portland, I’m now back at Stanford University working with Paul Ehrlich trying to finish our book (no sneak peaks yet, I’m afraid). I have to report that we’ve completed about about 75 % it, and I’m starting to feel like the end is in sight. We hope to have it published early in 2013.

So here they are – the latest 9 PhD offerings from us at the Global Ecology Laboratory. If you want to get more information, contact the first person listed as the first supervisor at the end of each project’s description.

1. Optimal survey and harvest models for South Australian macropods (I’ve advertised this before, but so far, no takers):

The South Australia Department of Environment, Water and Natural Resources (DEWNR) is custodian of a long-term macropod database derived from the State’s management of the commercial kangaroo harvest industry. The dataset entails aerial survey data for most of the State from 1978 to present, annual population estimates, quotas and harvests for three species: red kangaroo (Macropus rufus), western grey kangaroo (Macropus fuliginosus), and the euro (Macropus robustus erubescens).

DEWNR wishes to improve the efficiency of surveys and increase the precision of population estimates, as well as provide a more quantitative basis for setting harvest quotas.

We envisage that the PhD candidate will design and construct population models:

  • to predict population size/densities with associated uncertainty, linking fluctuations to environmental variability (including future climate change projections)
  • to evaluate the efficiency of spatially explicit aerial surveys
  • to estimate demographic parameters (e.g., survival rate) from life tables and
  • to estimate spatially explicit sustainable harvest quotas

 Supervisors: me, A/Prof. Phill Cassey, Dr Damien Fordham, Dr Brad Page (DEWNR), Professor Michelle Waycott (DEWNR).

2. Correcting for the Signor-Lipps effect

The ‘Signor-Lipps effect’ in palaeontology is the notion that the last organism of a given species will never be recorded as a fossil given the incomplete nature of the fossil record (the mirror problem is the ‘Jaanusson effect’, where the first occurrence is delayed past the true time of origination). This problem makes inference about the timing and speed of mass extinctions (and evolutionary diversification events) elusive. The problem is further complicated by the concept known as the ‘pull of the recent’, which states that the more time since an event occurred, the greater the probability that evidence of that event will have disappeared (e.g., erased by erosion, hidden by deep burial, etc.).

In a deep-time context, these problems confound the patterns of mass extinctions – i.e., the abruptness of extinction and the dynamics of recovery and speciation. This PhD project will apply a simulation approach to marine fossil time series (for genera and families, and some individual species) covering the Phanerozoic Aeon, as well as other taxa straddling the K-T boundary (Cretaceous mass extinction). The project will seek to correct for taphonomic biases and assess the degree to which extinction events for different major taxa were synchronous.

The results will also have implications for the famous Sepkoski curve, which describes the apparent logistic increase in marine species diversity over geological time with an approximate ‘carrying capacity’ reached during the Cenozoic. Despite recent demonstration that this increase is partially a taphonomic artefact, a far greater development and validation/sensitivity analysis of underlying statistical models is needed to resolve the true patterns of extinction and speciation over this period.

The approach will be to develop a series of models describing the interaction of the processes of speciation, local extinction and taphonomic ‘erasure’ (pull of the recent) to simulate how these processes interact to create the appearance of growth in numbers of taxa over time (Sepkoski curve) and the abruptness of mass extinction events. The candidate will estimate key parameters in the model to test whether the taphonomic effect is strong enough to be the sole explanation of the apparent temporal increase in species diversity, or whether true diversification accounts for this.

Supervisors: me, Prof. Barry Brook

3. Genotypic relationships of Australian rabbit populations and consequences for disease dynamics

Historical evidence suggests that there were multiple introduction events of European rabbits into Australia. In non-animal model weed systems it is clear that biocontrol efficacy is strongly influenced by the degree of genetic diversity and number of breed variants in the population.

The PhD candidate will build phylogenetic relationships for Australian rabbit populations and develop landscape genetic models for exploring the influence of myxomatosis and rabbit haemorrhagic disease virus (RHDV) on rabbit vital rates (survival, reproduction and dispersal) at regional and local scales. Multi-model synthesis will be used to quantify the relative roles of environment (including climate) and genotype on disease prevalence and virulence in rabbit populations.

Supervisors: A/Prof Phill Cassey, Dr Damien Fordham, Prof Barry Brook Read the rest of this entry »








%d bloggers like this: