Climate explained: humans have dealt with plenty of climate variability

23 09 2020
© Professor John Long, Flinders University, Author provided

(originally published on The Conversation)


How much climate variability have humans dealt with since we evolved and since we started settling (Neolithic times)? How important was migration to human survival during these periods?


The climate always fluctuates as variation in the Sun’s heat reaching Earth drives glacial-interglacial cycles. Over the past 420,000 years there have been at least four major transitions between ice ages and relatively warmer interglacial periods.

Modern humans emigrated from Africa to populate the rest of the globe between 120,000 and 80,000 years ago, which means our species has had to adapt to many massive climate transitions.


Warming and cooling

The Last Interglacial 129,000–116,000 years ago was a period of intense global warming (from around 2 ℃ higher than today to as much as 11 ℃ higher in the Arctic), leading to a large reduction of the Arctic, Greenland and Antarctic ice sheets, and a 6–9 m rise in sea level.

The front of a glacier breaking away and falling into the sea.
Arctic glaciers have melted before. Flickr/Kimberly Vardeman, CC BY

The Last Glacial Maximum from 26,500–19,000 years ago coincided with a large drop in atmospheric CO₂ and a 4.3 ℃ cooling globally.

Read more: Climate explained: will the tropics eventually become uninhabitable?


Low temperatures turned much of the world’s water into ice and expanded glaciers.

Read the rest of this entry »

Less snow from climate change pushes evolution of browner birds

7 09 2017

© Bill Doherty

© Bill Doherty

Climate changes exert selective pressures on the reproduction and survival of species. A study of tawny owls from Finland finds that the proportion of two colour morphs varies in response to the gradual decline of snowfall occurring in the boreal region.

Someone born in the tropics who travels to the Antarctic or the Himalaya can, of course, stand the cold (with a little engineering help from clothing, however). The physiology of our body is flexible enough to tolerate temperatures alien to those of our home. We can acclimate and, if we are healthy, we can virtually reside anywhere in the world.

However, modern climate change is steadily altering the thermal conditions of the native habitats of many species. Like us, some can live up to as much heat or cold as their genetic heritage permits, because each species can express a range of morphological, physiological, and behavioural variation (plasticity). Others can modify their genetic make-up, giving way to novel species-specific features or genotypes (evolution).

When genetic changes are speedy, that is, within a few generations, we are witnessing ‘microevolution’ — in contrast to ‘macroevolution’ across geological time scales as originally reported by Darwin and Wallace (1). To date, the detection of microevolution in response to modern climate change remains elusive, and many studies claiming so seem to lack the appropriate data to differentiate microevolution from phenotypic plasticity (i.e., the capacity of a single genotype to exhibit variable phenotypes in different environments) (2, 3). Read the rest of this entry »