New job posting: Research Fellow in Eco-Epidemiology & Human Ecology

11 05 2023

We are currently seeking a Research Fellow in Eco-epidemiology/Human Ecology to join our team at Flinders University.

The successful candidate will develop spatial eco-epidemiological models for the populations of Indigenous Australians exposed to novel diseases upon contact with the first European settlers in the 18th Century. The candidate will focus on:

  • developing code to model how various diseases spread through and modified the demography of the Indigenous population after first contact with Europeans;
  • contributing to the research project by working collaboratively with the research team to deliver key project milestones;
  • independently contributing to ethical, high-quality, and innovative research and evaluation through activities such as scholarship, publishing in recognised, high-quality journals and assisting the preparation and submission of bids for external research funding; and
  • supervising of Honours and postgraduate research projects.


The ideal candidate will have advanced capacity to develop eco-epidemiological models that expand on the extensive human demographic models already developed under the auspices of the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, of which Flinders is the Modelling Node. To be successful in this role, the candidate will demonstrate experience in coding advanced spatial models including demography, epidemiology, and ecology. The successful candidate will also demonstrate:

Read the rest of this entry »




What we know we don’t know about animal tolerances to high temperatures

30 01 2023

Each organism has a limit of tolerance to cold and hot temperatures. So, the closer it lives to those limits, the higher the chances of experiencing thermal stress and potentially dying. In our recent paper, we revise gaps in the knowledge of tolerance to high temperatures in cold-blooded animals (ectotherms), a diverse group mostly including amphibians and reptiles (> 16,000 species), fish (> 34,000 species), and invertebrates (> 1,200,000 species).

As a scientist, little is more self-realising than to write and publish a conceptual paper that frames the findings of your own previous applied-research papers. This is the case with an opinion piece we have just published in Basic and Applied Ecology1 — 10 years, 4 research papers2-5 [see related blog posts here, here, here and here], and 1 popular-science article6 after I joined the Department of Biogeography and Global Change (Spanish National Research Council) to study the thermal physiology of Iberian lizards under the supervision of Miguel Araújo and David Vieites.

Iberian lizards for which heat tolerance is known (varying from 40 to 45 °C)
 
[left, top to bottom] Iberian emerald lizard (Lacerta schreiberi, from Alameda del Valle/Madrid) and Geniez’s wall lizard (Podarcis virescens, Fuertescusa/Cuenca), and [right, top to bottom] Algerian sand racer (Psammodromus algirus, Navacerrada/Madrid), Andalusian wall lizard (Podarcis vaucheri, La Barrosa/Cádiz), Valverde’s lizard (Algyroides marchi, Riópar/Albacete), and Cyren’s rock lizard (Iberolacerta cyreni, Valdesquí/Madrid). Heat-tolerance data deposited here and used to evaluate instraspecific variation of heat tolerance3,4. Photos: Salvador Herrando-Pérez.

In our new paper, we examine how much we know and what areas of research require further development to advance our understanding of how and why the tolerance of ectotherm fauna to high environmental temperature (‘heat tolerance’ hereafter) varies within and across the Earth’s biomes. We focus on data gaps using the global database GlobTherm as a reference template (see Box 1 below).

Our three main tenets

1. Population versus species data: Most large-scale ecophysiological research is based on modelling one measurement of heat tolerance per species (typically representing one population and/or physiological assay) over hundreds to thousands of species covering broad geographical, phylogenetic, and climatic gradients.

But there is ample evidence that heat tolerance changes a lot among populations occupying different areas of the distribution of a species, and such variation must be taken into account to improve our predictions of how species might respond to environmental change and face extinction.

Read the rest of this entry »




Promoting diversity in the lab

15 09 2022

My definition of a ‘lab’ is simply a group of people who do the science in question — and people are a varied bunch, indeed. But I wager that most scientists would not necessarily give much dedicated thought to the diversity of the people in their lab, and instead probably focus more on obtaining the most qualified and cleverest people for the jobs that need doing.

For example, I have yet to meet an overtly racist, sexist, or homophobic scientist involved actively in research today (although unfortunately, I am sure some do still exist), so I doubt that lab heads consciously avoid certain types of people when hiring or taking on new students as they once did. The problem here is not that scientists tend to exclude certain types of people deliberately based on negative stereotypes; rather, it concerns more the subconscious biases that might lurk within, and about which unfortunately most of us are blissfully unaware. But all scientists must be aware of, and seek to address, their hidden biases.

It is time to place my cards on the table: I am a middle-aged, Caucasian, male scientist who has lived in socially inclusive and economically fortunate countries his entire life. As such, I am the quintessential golden child of scientific opportunity, and I am therefore also one of the biggest impediments to human diversity in science. I am not able to change my status per se; however, I can change how I perceive, acknowledge, and act to address my biases.

The earlier scientists recognise these challenges in their career, the more effective they will be.

Gender balance

I acknowledge that as a man, I am already on thin ice discussing gender inequality in science today, for it is a massive topic that many, far more qualified people are tackling. But being of the male flavour means that I have to, like an alcoholic, admit that I have a problem, and then take steps to resolve that problem. After all, privilege is generally invisible to those who have it. If you are a male scientist reading this now, then my discussion is most pertinent to you. If you are female, then perhaps you can use some of these pointers to educate your male colleagues and students.

There is now ample evidence that science as a discipline is just as biased against women as most other sectors of professional employment, even though things have improved since the bad old days of scientific old-boys’ clubs. Journals tend to appoint more men than women on their editorial boards, and that editors display what is known as homophily when selecting reviewers for manuscripts: the tendency to select reviewers of the same gender as themselves.

Likewise, experimental evidence demonstrates that scientists in general rate male-authored science writing higher than female-authored works, and that academic scientists tend to favour male applicants over females for student positions. In the United Kingdom, as I suspect is more or less the case almost everywhere else, female academics in science, engineering, and mathematics also tend to have more administrative duties, and hence, less time to do research; they also have fewer opportunities for career development and training, as well as earning a lower salary, holding fewer senior roles, and being less likely to be granted permanent positions.

Read the rest of this entry »




Should we bring back the thylacine? We asked 5 experts

17 08 2022
Tasmanian Museum and Art Gallery

Signe Dean, The Conversation

In a newly announced partnership with Texas biotech company Colossal Biosciences, Australian researchers are hoping their dream to bring back the extinct thylacine is a “giant leap” closer to fruition.

Scientists at University of Melbourne’s TIGRR Lab (Thylacine Integrated Genetic Restoration Research) believe the new partnership, which brings Colossal’s expertise in CRISPR gene editing on board, could result in the first baby thylacine within a decade.

The genetic engineering firm made headlines in 2021 with the announcement of an ambitious plan to bring back something akin to the woolly mammoth, by producing elephant-mammoth hybrids or “mammophants”.

But de-extinction, as this type of research is known, is a highly controversial field. It’s often criticised for attempts at “playing God” or drawing attention away from the conservation of living species. So, should we bring back the thylacine? We asked five experts.

Read the rest of this entry »




Can we resurrect the thylacine? Maybe, but it won’t help the global extinction crisis

9 03 2022

NFSA

(published first on The Conversation)

Last week, researchers at the University of Melbourne announced that thylacines or Tasmanian tigers, the Australian marsupial predators extinct since the 1930s, could one day be ushered back to life.

The thylacine (Thylacinus cynocephalus), also known as the ‘Tasmanian tiger’ (it was neither Tasmanian, because it was once common in mainland Australia, nor was it related to the tiger), went extinct in Tasmania in the 1930s from persecution by farmers and habitat loss. Art by Eleanor (Nellie) Pease, University of Queensland.
Centre of Excellence for Australian Biodiversity and Heritage

The main reason for the optimism was the receipt of a A$5 million philanthropic donation to the research team behind the endeavour.

Advances in mapping the genome of the thylacine and its living relative the numbat have made the prospect of re-animating the species seem real. As an ecologist, I would personally relish the opportunity to see a living specimen.

The announcement led to some overhyped headlines about the imminent resurrection of the species. But the idea of “de-extinction” faces a variety of technical, ethical and ecological challenges. Critics (like myself) argue it diverts attention and resources from the urgent and achievable task of preventing still-living species from becoming extinct.

The rebirth of the bucardo

The idea of de-extinction goes back at least to the the creation of the San Diego Frozen Zoo in the early 1970s. This project aimed to freeze blood, DNA, tissue, cells, eggs and sperm from exotic and endangered species in the hope of one day recreating them.

The notion gained broad public attention with the first of the Jurassic Park films in 1993. The famous cloning of Dolly the sheep reported in 1996 created a sense that the necessary know-how wasn’t too far off.

The next technological leap came in 2008, with the cloning of a dead mouse that had been frozen at –20℃ for 16 years. If frozen individuals could be cloned, re-animation of a whole species seemed possible.

After this achievement, de-extinction began to look like a potential way to tackle the modern global extinction crisis.

Read the rest of this entry »




The integrity battlefield: where science meets policy

4 03 2022

Professor Ross Thompson, University of Canberra


On the whole, I am inclined to conclude that my experience of academia and publishing my work has been largely benign. Despite having published 120-odd peer-reviewed papers, I can count the number of major disputes on one hand. Where there have been disagreements, they have centred on issues of content, and despite the odd grumble, things have rarely escalated to the ad hominem. I have certainly never experienced concerted attacks on my work.

But that changed recently. I work in water science, participating in and leading multi-disciplinary teams that do research directly relevant to water policy and management. My colleagues and I work closely with state and federal governments and are often funded by them through a variety of mechanisms. Our teams are a complex blend of scientists from universities, state and federal research agencies, and private-sector consultancies. Water is big business in Australia, and its management is particularly pertinent as the world’s driest inhabited continent struggles to come to terms with the impacts of climate change.

In the last 10 years, Australia has undergone a AU$16 billion program of water reform that has highlighted the extreme pressure on ecosystems, rural communities, and water-dependent industries. In 2019, two documentaries (Cash Splash and Pumped) broadcast by the Australian Broadcasting Corporation were highly critical of the  outcomes of water reform. A group of scientists involved in working on the Murray-Darling Basin were concerned enough about the accuracy of aspects of those stories to support Professor Rob Vertessy from the University of Melbourne in drafting an Open Letter in response. I was a co-author on that letter, and something into which I did not enter lightly. We were very concerned about being seen to advocate for any particular policy position, but were simultaneously committed to contributing to an informed public debate. A later investigation by the Australian Communications and Media Authority also highlighted concerns with the Cash Splash documentary.

Fast forward to 2021 and the publication of a paper by Colloff et al. (2021) in the Australasian Journal of Water Resources. In that paper, the authors were critical of the scientists that had contributed to the Open Letter and claimed they had been subject to “administrative capture” and “issue advocacy”. Administrative capture is defined here as:

Read the rest of this entry »




Wondering if you should apply for a DECRA?

7 02 2022

Do you love doing job applications, but wish they were longer and more involved?

If so, applying for an Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA) should be right up your alley.

If, like most people, you answered a resounding NO! to that question, there are still many good reasons to apply for a DECRA. But there are also some completely valid reasons why you might not apply, so it pays to weigh up the pros and cons if you’re thinking about it.

Let’s go through some of these points, plus tips on how to make a competitive application (I just submitted a DECRA application in the last round, so it’s all painfully fresh in my memory). 

What the hell is a DECRA?

The Discovery Early Career Researcher Awards offered by the Australian Research Council are highly competitive, with success rates of between 12% (ouch!) and 20% across years (but expect especially low success rates in the next round/DECRA23, given the bumper crop of applicants). 

DECRAs are restricted to researchers who are (i) less than 5-years out from their PhD conferral, and (ii) who are proposing non-medical projects.

The 5-year eligibility period is based on time spent ‘research active’, to accommodate the different career pathways people follow. This means that people who haven’t been working 100% in research since completing their PhD can tally up career interruptions (which can relate to illnesses or disability, carer responsibilities, parental leave, unemployment, and employment in non-research positions) and extend their eligibility period.

So even if you are well-over 5 years post PhD (as was the case for me), you might still be eligible to apply. If you’re considering a medical science project, then you need to check out the schemes offered by the National Health and Medical Research Council (NHMRC).

Pros and Cons

Read the rest of this entry »




… some (models) are useful

8 06 2021

As someone who writes a lot of models — many for applied questions in conservation management (e.g., harvest quotas, eradication targets, minimum viable population sizes, etc.), and supervises people writing even more of them, I’ve had many different experiences with their uptake and implementation by management authorities.

Some of those experiences have involved catastrophic failures to influence any management or policy. One particularly painful memory relates to a model we wrote to assist with optimising approaches to eradicate (or at least, reduce the densities of) feral animals in Kakadu National Park. We even wrote the bloody thing in Visual Basic (horrible coding language) so people could run the module in Excel. As far as I’m aware, no one ever used it.

Others have been accepted more readily, such as a shark-harvest model, which (I think, but have no evidence to support) has been used to justify fishing quotas, and one we’ve done recently for the eradication of feral pigs on Kangaroo Island (as yet unpublished) has led directly to increased funding to the agency responsible for the programme.

According to Altmetrics (and the online tool I developed to get paper-level Altmetric information quickly), only 3 of the 16 of what I’d call my most ‘applied modelling’ papers have been cited in policy documents:

Read the rest of this entry »




Worried about Earth’s future? Well, the outlook is worse than even scientists can grasp

14 01 2021

Daniel Mariuz/AAP

Corey J. A. Bradshaw, Flinders University; Daniel T. Blumstein, University of California, Los Angeles, and Paul Ehrlich, Stanford University

Anyone with even a passing interest in the global environment knows all is not well. But just how bad is the situation? Our new paper shows the outlook for life on Earth is more dire than is generally understood.

The research published today reviews more than 150 studies to produce a stark summary of the state of the natural world. We outline the likely future trends in biodiversity decline, mass extinction, climate disruption and planetary toxification. We clarify the gravity of the human predicament and provide a timely snapshot of the crises that must be addressed now.

The problems, all tied to human consumption and population growth, will almost certainly worsen over coming decades. The damage will be felt for centuries and threatens the survival of all species, including our own.

Our paper was authored by 17 leading scientists, including those from Flinders University, Stanford University and the University of California, Los Angeles. Our message might not be popular, and indeed is frightening. But scientists must be candid and accurate if humanity is to understand the enormity of the challenges we face.

Girl in breathing mask attached ot plant in container

Humanity must come to terms with the future we and future generations face. Shutterstock

Getting to grips with the problem

First, we reviewed the extent to which experts grasp the scale of the threats to the biosphere and its lifeforms, including humanity. Alarmingly, the research shows future environmental conditions will be far more dangerous than experts currently believe. Read the rest of this entry »





Double standards: climate change vs. COVID-19

3 08 2020

Both anthropogenic climate change and the coronavirus pandemic entail serious health risks. Why then do climatologists lack the public credibility and political repercussions that doctors have? Preventing the aggravation of the climate emergency is possible if we react to it in the same way we are reacting to the pandemic, essentially, following the advice of the scientific community.

 

We have as much uncertainty regarding the coronavirus COVID-19 that causes acute respiratory failure (SARS-CoV-2) as we do about human-made greenhouse gases causing climate change.

Both problems are currently costing (and will cost) trillions to national economies. But the main difference between the two when it comes to public perception is not economic but temporal. The virus has changed our lives in days to months whereas climate change is taking years to decades to do so. This short-termism about how we respond to the pace of an emergency has been sculped in our genes by evolution (1) and contaminates politics.

Early this year, after deriding the onset of the pandemic, many climate change-denialist leaders (the obvious picks are Trump, Bolsonaro, and Johnson [note that Johnson modified his public views on climate change when becoming UK foreign secretary in 2016]) had to swallow their own words and honour their political profession when human corpses started to pile up in their hospitals. Read the rest of this entry »





I’m nearing the end of my PhD/postdoc … What the hell am I supposed to do now?

13 07 2020

Originally published on the GE.blog.

What do you want to be when you grow up?

Elasmotherium

Unicorns, like job security, used to exist (actually, it’s an Elasmotherium)

The term ‘job security’ seems a fanciful idea to budding biologists — you may as well be studying unicorns (and no, narwhal don’t count …)! Now, you’re a fully fledged adult, your thoughts are likely filled with adult questions like ‘where will I live’ and ‘how will I scrape some money together?’. Not knowing where to go next can be very stressful.

A change in profession might help with job security, but if you’ve made it this far in biology, its highly likely that you (like me) have been obsessed with biology since early childhood, and it’s not something you’re willing to give up easily. On top of that, you now have years of research experience and skill development behind you — it would be better if that experience didn’t go to waste. How, then, can we keep funding our biology addiction? I don’t want to sound like a snake-oil salesman here, so let’s be straight-up about this: there are no easy options. But, importantly, there are options — in research, the university sector, and wider afield.

So, down to the serious business. Your options (depending on your personal preferences) are:

1. Research or bust!

In-house postdoctoral fellowships

Research bodies in Australia, including many universities, the CSIRO and the Australian Museum, offer in-house postdoctoral fellowships for early-career researchers. Applying for one of these postdocs usually involves the candidate developing a research proposal and initiating collaboration with researchers in the institute offering the fellowship. Read the rest of this entry »





Before you throw in the academic towel

17 02 2020

Throw-in-Towel-_-roboriginal-copy-e1491323619551A modified excerpt from The Effective Scientist:

Many academic scientists end up asking themselves at some point why they should even bother.

The rewards of a career in academic science are trifling, and at times downright insulting. Universities and many other research organisations are notoriously badly run, flipping uncomfortably and with frustrating frequency between incompetence and overbearing corporatisation. Even if they were once scientists themselves, your administrators and managers will fail catastrophically to provide you with clear guidance regarding their capricious expectations.

You will be underpaid. You will work too much. You will have to fight for every scrap of recognition and freedom.

The majority of the students you teach will never even thank you for your efforts. You will also spend your life begging for money to do your research, and in these days of tenuous employment security, you will most likely spend much of your time practically begging to renew your own salary.

If your chosen scientific discipline has even a modicum of direct application, you will nearly always be frustrated by the lack of engagement with and recognition by business, politics, and society in general. 

Not only will you be largely overlooked, you will more than likely be attacked by those who happen to disagree (ideologically) with your data. As a result, frustration and even depression are not uncommon states of being for many scientists who choose to engage (as they should) with the general public.

But I offer you this thought before you throw in the proverbial towel. Despite the bullshit of the daily grind, there is nothing quite as comforting as being aware that science is the only human endeavour that regularly attempts to reduce subjectivity. In the face of all posturing, manipulation, deceit, ulterior motives, and fanatical beliefs that go on every day around us, science remains the bedrock of society, and so despite most human beings being ignorant of its importance, or actively pursuing its demise, all human beings have benefitted from science. Read the rest of this entry »





No, you won’t sacrifice scientific objectivity if you advocate

29 08 2019

marchforscience.png

Despite a lot of rather uninformed people out there who might view scientists as just flesh-covered automatons lacking the customary set of feelings, we are in fact normal human beings embedded in the same society as everyone else. We own houses, drive cars, have sex, have children, eat out in restaurants, drink, dance, vote, pay taxes and utilities, do sport, take vacations, see the doctor, laugh, cry, love, and all the rest of it.

As such, we have just as much stake in society as everyone else, and we are very much at the mercy of government policies, cultural norms, and other limitations that everyday life presents us. If we happen to discover through our research some aspect of our society that can be approved, does it suffice merely to publish the material within the academic literature and nebulously ‘hope’ someone else does some good with it?

It is a short, metaphysical step to entertain the idea of advocating for change more proactively than a random Tweet or a newspaper interview might imply. I appreciate that the ‘a’ word strikes fear and derision in the hearts of many scientists, for I too was once under the impression that it was not my job to advocate for anything beyond good scientific practice. Indeed, I practically insisted that my role was uniquely to develop the tools, collect the data, design the experiments, and elaborate the intricacies and complexities of the results to test hypotheses. No more. No less.

Even the thought of mimicking those placard-holding street protestors (my rather naïve impression of what an advocate looked like) used to revile me, for I had formed the (incorrect) opinion that any scientist who took up the protestor’s mantle had clearly abandoned her claim to be an intellectual.

In my view, once one crossed that intangible line into advocacy, the objectivity of all previous intellectual pursuits was immediately compromised, if not abandoned entirely. For me then, ‘advocacy’ equalled ‘subjectivity’, and that was not consistent with what I understood science to be.

I have since done a 180-degree turn on that innocent and narrow-minded perspective. First, I have since come to realise that true objectivity is beyond the reach of any human being, and that science can only provide the tools to reduce our innate subjectivity. As human beings, even scientists have all of our species’ weaknesses and limitations of perception, but science allows us to get as close to objectivity as is humanly possible. So, science is not the pursuit of objectivity per se; rather, it is the pursuit of subjectivity reduction. Errare humanum est. Read the rest of this entry »





The (not-so) funny question of whether scientists should be political leaders

15 08 2019

67401945_2509778735770137_9029097557816508416_n

At the risk of precociously setting fire to my powder keg, I thought it would be interesting to discuss the very real question of whether there should be more scientists in politics.

The reason I’m contemplating this particular question is because I’ve been forced to. Perhaps contrary to better judgement, I’ve agreed to take part in a the SciFight Science Comedy Debate in Adelaide on 31 August. Organised by scientist-comedian Alanta Colley, the event will pitch two scientist-comedian teams against each other to argue either in the affirmative or negative regarding this — scientists should rule the world.

Of course, the primary goal of the evening is to make people laugh (which still has me wondering whether I was a worthy choice for the role — thank Cthulu there will be some actual, live comedians there too).

But there’s a serious side to this question that I don’t think has any simple answers. Read the rest of this entry »





Being empathetic for better interdisciplinarity

4 06 2019

Source: taazatadka.com(originally published on the GE.blog)

Scientists appear to have mixed feelings when it comes to interdisciplinarity in science — the reaction spans from genuine enthusiasm right through to pure disdain.

I myself have crossed many research fields since my Masters project, but despite the support of my supervisors, I have already had to face some tough gatekeeping from science specialists in conferences and in front of other panels. Several times I was taken aback by some reactions, so I have started to become interested in the topic from a more analytical perspective. How are these fields’ boundaries defined in science?

Although each field’s specific methodology, jargon, and tendency to interpret results could represent communication barriers among them, this can be easily overcome by spending time learning the language of other groups, in the company of specialist collaborators, or by attending workshops.

But what about ideology — a philosophy of science inherent to a specific group of individuals? This is one of the things making us human. It definitely affects our society, and even if it is never assumed, it also affects the generation of scientific knowledge from its production to its transmission. Scientists have that connection to their field, its history, its identity, and its compromises.

For example, historians or philosophers use different ways of thinking than do physicists or biologists. The first group aims to clarify and analyse the reconstruction of past events, while the second group strives for conceptual understanding. While useful withina field, these specific ways of seeing science can generate roadblocks when two fields need to start a conversation.

I will tell you a story based on my own experience. Read the rest of this entry »





11 things academic research and surfing have in common

2 05 2019

1surf

Our very own surfing scientist, Dr Katharina Peters

(originally published on the GE.blog)

The last time I went surfing the waves were very slow and between sets I had a lot of time to contemplate life. This was when it occurred to me that the pursuit of a career in academic research was similar, in many ways, to trying to catch waves. Here are 11 surprising things surfing and academic research have in common:

1. It’s a constant struggle and a long, hard slog to get past the white water

Paddling out through the white water, having wave after wave come crushing down on you while trying to turtle-roll through the biggest ones, can be a real challenge. Likewise, in science it takes most people years of study, work (often unpaid), long hours in the lab, the field, and at the desk, to establish themselves and potentially secure employment for a period longer than a year or two. You find yourself working late finishing papers from research you did years ago (again, usually unpaid), or volunteering to get more hands-on experience because you know how important these things are. But you power on, always trusting that, just like paddling through the white water will help get you the stamina and shoulder muscles you need to catch waves, all this work will lay the foundation for your career and make you a better scientist.

2Academia

2. Women are underrepresented and often treated badly (but it’s changing!)

Whether you look around you in the line-up at your surf spot or at a scientific conference, women are underrepresented. Many women I know have experienced discrimination related to their gender, as women are often not assessed based purely on their ability to shred or do high-quality research. Indeed, reviewers have an unconscious bias against women in science, and in surf competitions men get to compete when conditions are optimal whilst women are relegated to whatever is left. Nevertheless, slowly but surely, things are changing for women. It will still take many years to reach an equilibrium (if there is such a thing), but people are becoming more and more aware of the gap, and female researchers and surfers are pushing that glass ceiling.

3. Others always seem to be performing better than you

This is probably true for many areas in life! It always looks so much easier when others do it, and we tend to only see those who do better than us (also, imposter syndrome, anyone??). I guess it’s a lifelong task to learn not to compare yourself to others, to stay focused on your path and try to take inspiration from the achievements of others, rather than letting them demotivate you. Read the rest of this entry »





Cartoon guide to biodiversity loss LIII

25 03 2019

The second set of six biodiversity cartoons for 2019. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »





Good English and the scientific career: hurdles for non-native English speakers

13 02 2019

New post from Frédérik Saltré originally presented on the GE.blog.


It’s no secret that to be successful in academia, it’s not enough just to be a good scientist — being able to formulate and test hypotheses. You also need to be able to communicate that science effectively.

This implies a good command of the English language for anyone who wants a career in science. Mastering English (or not) will directly affect your work opportunities such as publishing, establishing networks at conferences, taking leadership of working groups, contributing to lab meetings (there is nothing worse than feeling left out of a conversation because of language limitations), and so forth.

But when it comes to language skills, not everyone is created equal because those skills mostly depend on a person’s background (e.g., learning English as a child or later in life), cultural reluctance, fear of making mistakes, lack of confidence, or simply brain design — this last component might offend some, but it appears that some people just happen to have the specific neuronal pathways to learn languages better than others. Whatever the reason, the process of becoming a good scientist is made more difficult if you happen not to have that specific set of neuronal pathways, even though not being a native English speaker does not prevent from being academically successful.

Read the rest of this entry »




Cartoon guide to biodiversity loss LII

2 01 2019

The first set of six biodiversity cartoons for 2019 to usher in the New Year. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »





Cartoon guide to biodiversity loss LI

23 10 2018

The six set of six biodiversity cartoons for 2018. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »