Everything you always wanted to know about conservation (but were afraid to ask)

14 05 2021

While some of us still might imagine the conservationist as a fancy explorer discovering new species in a remote corner of the world, or collecting samples while drowning in mud, a growing portion of conservation science nowadays consists of asking people about their ideas and behaviours.

Needless to say, this approach produces a fair share of awkward, if not dangerous, situations. After all, who likes the idea of completing a questionnaire from the fisheries office, asking about compliance with harvest limitations or licence fees? Or, even worse, who fancies being asked about the possession of illegally traded wildlife? 

Many conservationists would really like to have this valuable information, but at the same time it is clear that these questions put people at great discomfort. This leads to biased estimates of important behaviours affecting conservation. This is where specialised questioning techniques can help.

Specialised questioning techniques aim to prevent researchers, or anyone else, to trace back individual answers. Many do so by adding noise with a known distribution to individual answers. Then, when all answers are pooled, this noise is ruled out with statistical approaches. Noise can come from a randomising device (e.g. a die), like in the randomised response technique:

Individual answers can also be masked by asking respondents not to indicate if they engaged in a certain behaviour, but by asking them, out of a list of sensitive and non-sensitive behaviours, to indicate the number in which they engaged. This is the case of the unmatched count technique (a.k.a list experiments):

Read the rest of this entry »




Attack of the alien invaders: pest plants and animals leave a frightening $1.7 trillion bill

19 04 2021

Shutterstock


They’re one of the most damaging environmental forces on Earth. They’ve colonised pretty much every place humans have set foot on the planet. Yet you might not even know they exist.

We’re talking about alien species. Not little green extraterrestrials, but invasive plants and animals not native to an ecosystem and which become pests. They might be plants from South America, starfish from Africa, insects from Europe or birds from Asia.

These species can threaten the health of plants and animals, including humans. And they cause huge economic harm. Our research, recently published in the journal Nature, puts a figure on that damage. We found that globally, invasive species cost US$1.3 trillion (A$1.7 trillion) in money lost or spent between 1970 and 2017.

The cost is increasing exponentially over time. And troublingly, most of the cost relates to the damage and losses invasive species cause. Meanwhile, far cheaper control and prevention measures are often ignored.

Yellow crazy ants attacking a gecko
Yellow crazy ants, such as these attacking a gecko, are among thousands of invasive species causing ecological and economic havoc. Dinakarr, CC0, Wikimedia Commons

An expansive toll

Invasive species have been invading foreign territories for centuries. They hail from habitats as diverse as tropical forests, dry savannas, temperate lakes and cold oceans.

They arrived because we brought them — as pets, ornamental plants or as stowaways on our holidays or via commercial trade.

Read the rest of this entry »





One trillion dollars!

1 04 2021

Or thereabouts.

Let’s step back to 2015. In a former life when I was at another institution, I had the immense fortune and pleasure to spend six months on sabbatical in a little village just south of Paris working with my friend and colleague, Franck Courchamp, at Université Paris-Sud (now Université Paris-Saclay).

Sure, I felt a bit jammy living there with my daughter in a beautiful house just down the street from two mouth-watering pâtisseries and three different open marchés. We ate well. We picked mushrooms on the weekends or visited local châteaux. We went into the city and visited overwhelmingly beautiful museums at our leisure. We drank good champagne (well, I did, not my eight-year old). We had communal raclettes.

But of course, I was primarily there to do research with Franck and his lab, despite the obvious perks.

While I busied myself with several tasks while there, one of our main outputs was to put together the world’s first global database of the costs of invasive insects, which we subsequently published in 2016.

But that was only the beginning. With funding that started off the process with insects, Franck persevered and hired postdocs and took on more students to build the most comprehensive database of all invasive species ever compiled — InvaCost.

I cannot stress enough how massive an undertaking this was. It’s not simply a big list of all the cost estimates in existence, it’s also a detailed assessment of cost reliability, standardisation, and contextualisation. I’m not sure I would have had the courage to do this myself.

While the database itself has already been published, today we are pleased to announce the publication in Nature of the main results — High and rising economic costs of biological invasions worldwide — led by Christophe Diagne (one of the nicest people I’ve ever met), and co-authored by Boris Leroy, Anne-Charlotte Vaissière, Rodolphe Gozlan, David Roiz, Ivan Jarić, Jean-Michel Salles, me, and Franck Courchamp (of course).

Herein we described how the economic costs of invasive alien species accumulated since 1970 are tremendous, and that they have been steadily increasing over time.

Read the rest of this entry »




How to avoid reduce the probability of being killed by a shark

31 03 2021

Easy. Don’t go swimming/surfing/snorkelling/diving in the ocean.


“Oh, shit”

Sure, that’s true, but if you’re like many Australians, the sea is not just a beautiful thing to look at from the window, it’s a way of life. Trying telling a surfer not to surf, or a diver not to dive. Good luck with that.

A few years ago, I joined a team of super-cool sharkologists led by Charlie ‘Aussie-by-way-of-Belgium shark-scientist extraordinaire Huveneers, and including Maddie ‘Chomp’ Thiele and Lauren ‘Acid’ Meyer — to publish the results of some of the first experimentally tested shark deterrents.

It turns out that many of the deterrents we tested failed to show any reduction in the probability of a shark biting, with only one type of electronic deterrent showing any effect at all (~ 60% reduction).

Great. But what might that mean in terms of how many people could be saved by wearing such electronic deterrents? While the probability of being bitten by a shark is low globally, even in Australia (despite public perceptions), we wondered if the number of lives saved and injuries avoided was substantial.

In a new paper just published today in Royal Society Open Science, we attempted to answer that question.

To predict how many people could avoid shark bites if they were using properly donned electronic deterrents that demonstrate some capacity to dissuade sharks from biting, we examined the century-scale time series of shark bites on humans in Australia. This database — the ‘Australian Shark Attack File‘ — is one of the most comprehensive databases of its kind.

Read the rest of this entry »




A perfect storm of global ineptitude

18 03 2021

Given the ‘success’ (i.e., a lot of people seem to be reading it) of our recent Ghastly Future paper, I thought it would be interesting to go back and have a look at what we wrote in our 2015 book Killing the Koala on the subject. I think you’ll find that if anything we were probably overly optimistic.

An updated digest of that material follows.


When your accountant tells you to reduce expenditure, you do it or risk bankruptcy; when your electrician tells you the wiring in your house is dodgy, you replace it or risk your family dying in an avoidable fire; when your doctor tells you your cholesterol is too high, you cut back fat intake (and/or take cholesterol-reducing drugs) or risk a heart attack.

Yet few with any real political or financial power heed the warnings of environmental scientists. It is not just a few of us either — globally, ecologists, conservation biologists and environmental scientists are united in telling the world (for decades now) that growth in population and consumption cannot go on forever. They have been united in telling us if we do not clean up our planet, our life-support systems could ultimately fail.

There are now nearly eight billion people on Earth, and median projections suggest that the population will grow to ten billion or more by the end of the century. Some analyses indicate that with present technologies, Earth could only sustainably support indefinitely some 5 billion people under best-case scenarios, but assuming similar proportions of poverty and suffering as we have today. Others imply that 5 billion could be many too many.

As a result, humanity is entering that near-perfect storm of problems driven by overpopulation, overconsumption, gross inequalities, and the use of needlessly environmentally damaging technologies. The problems include the intertwined dilemmas of loss of the biodiversity that runs human life-support systems, climate disruption, energy shortages, global toxification, alteration of critical biogeochemical cycles, shortages of water, soil, mineral resources and farmland, and increasing probability of vast epidemics (as COVID-19 poignantly exemplifies).

Read the rest of this entry »




Cartoon guide to biodiversity loss LXV

10 03 2021

Here is the second set of biodiversity cartoons for 2021. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »




Recreational hunting, conservation and livelihoods: no clear evidence trail

2 03 2021
Enrico Di Minin, University of Helsinki; Anna Haukka, University of Helsinki; Anna Hausmann, University of Helsinki; Christoph Fink, University of Helsinki; Corey J. A. Bradshaw, Flinders University; Gonzalo Cortés-Capano, University of Helsinki; Hayley Clements, Stellenbosch University, and Ricardo A. Correia, University of Helsinki

In some African countries, lion trophy hunting is legal. Riaan van den Berg

In sub-Saharan Africa, almost 1,400,000 km² of land spread across many countries — from Kenya to South Africa — is dedicated to “trophy” (recreational) hunting. This type of hunting can occur on communal, private, and state lands.

The hunters – mainly foreign “tourists” from North America and Europe – target a wide variety of species, including lions, leopards, antelopes, buffalo, elephants, zebras, hippopotamus and giraffes.


Read more: Big game: banning trophy hunting could do more harm than good


Debates centred on the role of recreational hunting in supporting nature conservation and local people’s livelihoods are among the most polarising in conservation today.

On one hand, people argue that recreational hunting generates funding that can support livelihoods and nature conservation. It’s estimated to generate US$200 million annually in sub-Saharan Africa, although others dispute the magnitude of this contribution.

On the other hand, hunting is heavily criticised on ethical and moral grounds and as a potential threat to some species.

Evidence for taking a particular side in the debate is still unfortunately thin. In our recently published research, we reviewed the large body of scientific literature on recreational hunting from around the world, which meant we read and analysed more than 1000 peer-reviewed papers.

Read the rest of this entry »




Conservation paradox – the pros and cons of recreational hunting

20 02 2021
The recovery of species such as mountain zebra (Equus zebra) was partly supported by the economic benefits generated by trophy hunting. © Dr Hayley Clements

Through the leadership of my long-time friend and collaborator, Enrico Di Minin of the Helsinki Lab of Interdisciplinary Conservation Science, as well as the co-leadership of my (now) new colleague, Dr Hayley Clements, I’m pleased to report our new paper in One Earth — ‘Consequences of recreational hunting for biodiversity conservation and livelihoods‘.


My father was a hunter, and by proxy so was I when I was a lad. I wasn’t really a ‘good’ hunter in the sense that I rarely bagged my quarry, but during my childhood not only did I fail to question the morality of recreational hunting, I really thought that in fact it was by and large an important cultural endeavour.

It’s interesting how conditioned we become as children, for I couldn’t possibly conceive of hunting a wild, indigenous species for my own personal satisfaction now. I find the process not only morally and ethically reprehensible, I also think that most species don’t need the extra stress in an already environmentally stressed world.

I admit that I do shoot invasive European rabbits and foxes on my small farm from time to time — to reduce the grazing and browsing pressure on my trees from the former, and the predation pressure on the chooks from the latter. Of course, we eat the rabbits, but I tend just to bury the foxes. My dual perspective on the general issue of hunting in a way mirrors the two sides of the recreational hunting issue we report in our latest paper.

Wild boar (Sus scrofus). Photo: Valentin Panzirsch, CC BY-SA 3.0 AT, via Wikimedia Commons

I want to be clear here that our paper focuses exclusively on recreational hunting, and especially the hunting of charismatic species for their trophies. The activity is more than just a little controversial, for it raises many ethical and moral concerns at the very least. Yet, recreational hunting is frequently suggested as a way to conserve nature and support local people’s livelihoods. 

Read the rest of this entry »




Ancient bones — how old?

22 01 2021

Radiocarbon (14C) dating was developed by Nobel-Prize winning chemist Willard Libby, and has become the predominant method to build chronologies of ancient populations and species using the Quaternary fossil record. I have just published a research paper about 14C dating of fossil bone reviewing the four standard chemical pretreatments of bone collagen to avoid sample contamination and generate accurate fossil ages: gelatinization, ultrafiltration, XAD purification and hydroxyproline isolation. Hydroxyproline isolation is perceived as the most accurate pretreatment in a questionnaire survey completed by 132 experts from 25 countries, but remains costly, time-consuming and not widely available. I argue that (1) innovation is urgently required to develop affordable analytical chemistry to date low-mass samples of collagen amino acids, (2) those developments should be overseen by a certification agency, and (3) 14C users should be more conceptually involved in how (much) 14C chemistry determines dating accuracy. Across the board, scientific controversies like the timing of Quaternary extinctions need not be fuelled by inaccurate chronological data.


Megafauna bones from the Quaternary fossil record. Top: excavation of a partial skeleton of a short-faced kangaroo Procoptodon browneorum at Tight Entrance Cave (Western Australia) [1]: these bones are close to the limit of radiocarbon (14C) dating in a geological context 43000 to 49000 years old. Middle: metacarpal of the extinct horse Hippidion cf. devillei from Casa del Diablo (Peru) 14C dated at 11980 ± 100 years before present (BP) (CAMS-175039) following XAD purification of collagen gelatin [2]. Bottom: collection of skeletal remains of (mostly) red deer Cervus elaphus from El Cierro Cave (Spain) 14C dated at 15520 ± 75 years BP on ultrafiltered gelatin (OxA-27869 and OxA-27870 average) [3].


Scientists have widely been interested in the present and future state of biodiversity. Ecologists (the main audience of this blog) have also looked into the past with pioneering investigations addressing the composition of ancient forests and the origins of agriculture in layers of fossil pollen accumulated in lake sediments [4]. But it took us decades to see the fossil record as a useful tool (combining biological, geochemical and molecular techniques) to answer basic ecological questions. Some of those questions are critical for conserving today’s biodiversity [5, 6]: for example, when did human impacts on ecosystems become global or what extinct species have best tolerated past environmental change and what that means to modern species? [7].

The study of (pre)historic biological events relies one way or another on our ability to time when a certain animal, human, or plant occurred and what environmental conditions they experienced, and relies on concepts borrowed from archaeology (past human activity), palaeontology (fossils), palaeocology (species responses to past environments), and geochronology (age of fossils and/or their geological context). Among the range of chronological methods available to date biological and cultural samples [8], radiocarbon (14C) dating has become the most important for dating bones aged modern to late Quaternary (last ~ 50,000 years). Hereafter, ‘bone’ comprises antler, bone, ivory and teeth. 14C dating of bones is appealing at least for four reasons: 

Read the rest of this entry »





Worried about Earth’s future? Well, the outlook is worse than even scientists can grasp

14 01 2021

Daniel Mariuz/AAP

Corey J. A. Bradshaw, Flinders University; Daniel T. Blumstein, University of California, Los Angeles, and Paul Ehrlich, Stanford University

Anyone with even a passing interest in the global environment knows all is not well. But just how bad is the situation? Our new paper shows the outlook for life on Earth is more dire than is generally understood.

The research published today reviews more than 150 studies to produce a stark summary of the state of the natural world. We outline the likely future trends in biodiversity decline, mass extinction, climate disruption and planetary toxification. We clarify the gravity of the human predicament and provide a timely snapshot of the crises that must be addressed now.

The problems, all tied to human consumption and population growth, will almost certainly worsen over coming decades. The damage will be felt for centuries and threatens the survival of all species, including our own.

Our paper was authored by 17 leading scientists, including those from Flinders University, Stanford University and the University of California, Los Angeles. Our message might not be popular, and indeed is frightening. But scientists must be candid and accurate if humanity is to understand the enormity of the challenges we face.

Girl in breathing mask attached ot plant in container

Humanity must come to terms with the future we and future generations face. Shutterstock

Getting to grips with the problem

First, we reviewed the extent to which experts grasp the scale of the threats to the biosphere and its lifeforms, including humanity. Alarmingly, the research shows future environmental conditions will be far more dangerous than experts currently believe. Read the rest of this entry »





Time for a ‘cold shower’ about our ability to avoid a ghastly future

13 01 2021

I wish it need not have happened in my time,” said Frodo. “So do I,’ said Gandalf, “and so do all who live to see such times. But that is not for them to decide. All we have to decide is what to do with the time that is given us.”

Frodo Baggins and Gandalf, The Fellowship of the Ring

Today, 16 high-profile scientists and I published what I describe as a ‘cold shower’ about society’s capacity to avoid a ghastly future of warfare, disease, inequality, persecution, extinction, and suffering.

And it goes way beyond just the plight of biodiversity.

No one who knows me well would mistake me for an optimist, try as I might to use my colleagues’ and my research for good. Instead, I like to describe myself as a ‘realist’. However, this latest paper has made even my gloomier past outputs look downright hopeful.

And before being accused of sensationalism, let me make one thing abundantly clear — I sincerely hope that what we describe in this paper does not come to pass. Not even I am that masochistic.

I am also supportive of every attempt to make the world a better place, to sing about our successes, regroup effectively from our failures, and maintain hope in spite of evidence to the contrary.

But failing to acknowledge the magnitude and the gravity of the problems facing us is not just naïve, it is positively dangerous and potentially fatal.

It is this reason alone that prompted us to write our new paper “Underestimating the challenges of
avoiding a ghastly future
” just published in the new journal, Frontiers in Conservation Science.

Read the rest of this entry »




Cartoon guide to biodiversity loss LXIV

7 01 2021

As the pandemic rages globally, and the fragility of the American political system goes on full display, I give you the first set of biodiversity cartoons for 2021. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »




Influential conservation papers of 2020

19 12 2020

Following my late-December tradition, I present — in no particular order — a retrospective list of the ‘top’ 20 influential papers of 2020 as assessed by experts in Faculty Opinions (formerly known as F1000). See previous years’ lists here: 201920182017201620152014, and 2013.


Life in fluctuating environments — “… it tackles a fundamental problem of bio-ecology (how living beings cope with the fluctuations of the environment) with a narrative that does not make use of the cumbersome formulas and complicated graphs that so often decorate articles of this kind. Instead, the narrative and the illustrations are user-friendly and easy to understand, while being highly informative.

Forest carbon sink neutralized by pervasive growth-lifespan trade-offs — “… deals with a key process in the global carbon cycle: whether climate change (CC) is enhancing the natural sink capacity of ecosystems or not.

Bending the curve of terrestrial biodiversity needs an integrated strategy — “… explores different scenarios about the consequences of habitat conversion on terrestrial biodiversity.

Rebuilding marine life — “The logic is: leave nature alone, and it will come back. Not necessarily as it was before, but it will come back.

Towards a taxonomically unbiased European Union biodiversity strategy for 2030 — “… states that the emperor has no clothes, providing an estimate of the money dedicated to biodiversity conservation (a lot of money) and then stating that the bulk of biodiversity remains unstudied and unprotected, while efforts are biased towards just a few “popular” species.

Read the rest of this entry »




Citizens ask the expert in climate physics

24 11 2020

In the first of two consecutive interviews with climate-change experts, authors, editors and readers of the Spanish magazine Quercus have a chat with Ken Caldeira, a global-ecology researcher at the Carnegie Institution for Science (Washington, USA). His responses attest that the climate system is complex, and that we need to be practical in dealing with the planet’s ongoing climate emergency.

PhD in atmospheric sciences and professor at Stanford University (USA), Ken Caldeira has pioneered the study of ocean acidification and its impact on coral reefs (1) and geoengineering solutions to mitigate anthropogenic climate change by extracting carbon from the atmosphere and reflecting solar radiation (2, 3). He has also been part of the Intergovernmental Panel on Climate change (IPCC) and assessed zero-emissions scenarios (4, 5). To the right, Ken manoeuvers a drone while collecting aerial data from the Great Barrier Reef in Australia (6). Source.

SARS-Covid-19 is impacting the world. In our home country, Spain, scientists argue that (i) previous budget cuts in public health have weakened our capacity to tackle the pandemic (7), and (ii) the expert panels providing advice to our government should be independent of political agendas in their membership and decisions (8). Nevertheless, the Spanish national and regional governments’ data lack the periodicity, coherence, and detail to harness an effective medical response (9). Sometimes it feels as if politics partly operate by neglecting the science needed to tackle challenges such as the covid pandemic or climate change.

Having said that, even if a country has cultivated and invested in the best science possible, people have difficulties coming to terms with the idea that scientists work with probabilities of alternative scenarios. As much as there are different ways of managing a pandemic, scientists differ about how to mitigate the ecological, economic, and health impacts of a high-carbon society.

Thus, a more and more common approach is to make collective assessments (elicitations) by weighing different points of view across experts — for instance, to establish links between climate change and armed conflict (10) or to evaluate the role of nuclear energy as we transition to a low-carbon energy-production model (11). The overarching goal is to quantify consensus based on different (evidence-based) opinions.

The questions we here ask Ken Caldeira could well have different answers if asked of other experts. Still, as Ken points out, it is urgent that (of the many options available) we use the immense and certainty-proof knowledge we have already about climate change to take actions that work.

Interview done 23 January 2020 

We italicise each question and the name of the person asking the question and cite one to three relevant publications per question. For expanding on Ken Caldeira’s views on climate change, see a sample of his public talks here and here and newspaper articles here and here.

Read the rest of this entry »





Cartoon guide to biodiversity loss LXIII

26 10 2020

The sixth set of biodiversity cartoons for 2020. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »





Grand Challenges in Global Biodiversity Threats

8 10 2020

Last week I mentioned that the new journal Frontiers in Conservation Science is now open for business. As promised, I wrote a short article outlining our vision for the Global Biodiversity Threats section of the journal. It’s open-access, of course, so I’m also copying here on ConservationBytes.com.


Most conservation research and its applications tend to happen most frequently at reasonably fine spatial and temporal scales — for example, mesocosm experiments, single-species population viability analyses, recovery plans, patch-level restoration approaches, site-specific biodiversity surveys, et cetera. Yet, at the other end of the scale spectrum, there have been many overviews of biodiversity loss and degradation, accompanied by the development of multinational policy recommendations to encourage more sustainable decision making at lower levels of sovereign governance (e.g., national, subnational).

Yet truly global research in conservation science is fact comparatively rare, as poignantly demonstrated by the debates surrounding the evidence for and measurement of planetary tipping points (Barnosky et al., 2012; Brook et al., 2013; Lenton, 2013). Apart from the planetary scale of human-driven disruption to Earth’s climate system (Lenton, 2011), both scientific evidence and policy levers tend to be applied most often at finer, more tractable research and administrative scales. But as the massive ecological footprint of humanity has grown exponentially over the last century (footprintnetwork.org), robust, truly global-scale evidence of our damage to the biosphere is now starting to emerge (Díaz et al., 2019). Consequently, our responses to these planet-wide phenomena must also become more global in scope.

Conservation scientists are adept at chronicling patterns and trends — from the thousands of vertebrate surveys indicating an average reduction of 68% in the numbers of individuals in populations since the 1970s (WWF, 2020), to global estimates of modern extinction rates (Ceballos and Ehrlich, 2002; Pimm et al., 2014; Ceballos et al., 2015; Ceballos et al., 2017), future models of co-extinction cascades (Strona and Bradshaw, 2018), the negative consequences of invasive species across the planet (Simberloff et al., 2013; Diagne et al., 2020), discussions surrounding the evidence for the collapse of insect populations (Goulson, 2019; Komonen et al., 2019; Sánchez-Bayo and Wyckhuys, 2019; Cardoso et al., 2020; Crossley et al., 2020), the threats to soil biodiversity (Orgiazzi et al., 2016), and the ubiquity of plastic pollution (Beaumont et al., 2019) and other toxic substances (Cribb, 2014), to name only some of the major themes in global conservation. 

Read the rest of this entry »




New journal: Frontiers in Conservation Science

29 09 2020

Several months ago, Daniel Blumstein of UCLA approached me with an offer — fancy leading a Special Section in a new Frontiers journal dedicated to conservation science?

I admit that my gut reaction was a visceral ‘no’, both in terms of the extra time it would require, as well as my autonomous reflex of ‘not another journal, please‘.

I had, for example, spent a good deal of blood, sweat, and tears helping to launch Conservation Letters when I acted as Senior Editor for the first 3.5 years of its existence (I can’t believe that it has been nearly a decade since I left the journal). While certainly an educational and reputational boost, I can’t claim that the experience was always a pleasant one — as has been said many times before, the fastest way to make enemies is to become an editor.

But then Dan explained what he had in mind for Frontiers in Conservation Science, and the more I spoke with him, the more I started to think that it wasn’t a bad idea after all for me to join.

Read the rest of this entry »





Australia: the world’s unsustainable ‘mine’

16 09 2020

The COVID-19 pandemic has finally woken a few people up in this country. The closure of our automotive industry, the volatility of the mining sector, the deteriorating relations with our largest trading partner (China) — all these have seem to have acted like smelling salts for our semi-conscious leaders.

Australia has an abysmal manufacturing capacity, and I know that trying to fix this is very much on the table now at the highest levels. Australia is for the most part a 7.7 million km2 ‘mine’ to the world — we of course dig up our minerals and ship them overseas, and we export shit-tonnes of coal.

But much of our agricultural produce goes overseas too, including the very poorly valued live-export industry that takes the little water and minerals already in Australian soils and turns them inefficiently into livestock that is then sold overseas whole and living. Even putting aside the woeful animal-welfare issues this entails, it’s not much of a value-add and really a poor business model.

Read the rest of this entry »




Error-free genetic repositories: case of amphibians

18 08 2020

In our new study, we curated > 39,000 amphibian mitochondrial DNA (mtDNA) sequences from GenBank, identified > 2,000 sequencing and taxonomic errors, and published the quality-checked records as a curated dataset with an automated workflow in R. High-quality genetic data should help quantify and protect the diversity of the most threatened vertebrate group on Earth.

frogs

Upper left: species of Boophis from Andasibe, Madagascar. Upper right: Dendropsophus anceps from State of Rio de Janeiro, Brazil. Lower left; Dendropsophus bipunctatus from State of Rio de Janeiro, Brazil. Lower right: Bufo bufo from Gelderland, The Netherlands. All images from the author.

Scientists from a broad range of biological disciplines use genetic information like DNA sequences to test ecological and evolutionary hypotheses. Critically, genetics are today essential for naming species and therefore quantifying biodiversity, as well as determining where species live and how many individuals of a species occur in the wild.

Researchers are routinely asked, and more recently frequently required, by scientific journals to submit their DNA sequences to GenBank (among other public repositories of genetic data) as a requirement for publishing a paper. Although GenBank provides some quality controls (e.g., to filter sequences with bacterial contaminants and those from other kingdoms), authors are responsible for the quality of their genetic data and have full freedom to assign these to species in the taxonomy database of GenBank. Notably, once sequences have been deposited in GenBank, records are rarely updated in light of identified errors often resulting from taxonomic progress.

Two important notions emerge from the former status quo: Read the rest of this entry »





The only constant is change

27 07 2020

I just wrote a piece for the Flinders University alumnus magazine — Encounter — and I thought I’d share it here.

encounter-2020_Page_01

As an ecologist concerned with how life changes and adapts to the vagaries of climate and pervasive biological shuffling, ‘constant change’ is more than just a mantra — it is, in fact, the mathematical foundation of our entire discipline.

But if change is inevitable, how can we ensure it is in the right direction?

Take climate change for example. Since the Earth first formed it has experienced abrupt climate shifts many times, both to the detriment of most species in existence at any given time, and to the advantage of those species evolving from the ashes.

For more than 3.5 billion years, species have evolved and gone extinct, such that more than 99% of all species that have ever existed are now confined, permanently, to the vaults of the past.

Read the rest of this entry »