Noses baffled by ocean acidification

18 04 2017

Clown fish couple (Amphiprion percula) among the tentacles of anemone Heteractis magnifica in Kimbe Bay (Papua New Guinea) – courtesy of Mark McCormick. Clownfish protect anemones from predators and parasites in exchange of shelter and food. The fish tolerates the host’s venom because its skin is protected by a mucus layer some 2-3× thicker than phylogenetically related species (12); clownfish fabricate the mucus themselves and seem to obtain anemone antigens through a period of acclimation (13), but whether protection is acquired or innate is still debated. Clownfish are highly social bony fish, forming groups with one reproductive pair (up to 11 cm in length each) and several smaller, non-reproductive males. Reproduction is protandrous (also known as sequential hermaphroditism), so larvae are born male and, as soon as the reproductive female dies, her widower becomes female and the largest of the subsidiary males becomes the alpha male. The IUCN lists clownfish, generically named ‘anemone fish’, as threatened by the pet-trade industry and habitat degradation, although surprisingly, only 1 species has been assessed (A. sandaracinos). The clown anemone fish A. ocellaris is the species that inspired Nemo in the 2003 Academy-Award fiction movie – contrary to the logical expectation that the Oscars Red Carpet would generate support for conservation on behalf of Hollywood, of the 1568 species represented in the movie, only 16 % of those evaluated are threatened (14).

Smell is like noise, the more scents we breathe in one sniff, the more difficult it is to distinguish them to the point of olfactory saturation. Experimental work with clownfish reveals that the increase in dissolved carbon dioxide in seawater, mimicking ocean acidification, alters olfactory physiology, with potential cascading effects on the demography of species.

Places such as a restaurant, a hospital or a library have a characteristic bouquet, and we can guess the emotional state of other people by their scents. Smell is critical between predators and prey of many species because both have evolved to detect each other without the aid of vision. At sea, the smell of predators dissolves in water during detection, attack, capture, and ingestion of prey, and many fishes use this information to assess the risk of ending up crunched by enemy teeth (1, 2). But predator-prey interactions can be modified by changes in the chemical composition of seawater and are therefore highly sensitive to ongoing ocean acidification (see global measuring network here). Experts regard ocean acidification as the ‘other CO2 problem’ of climate change (3) — just to emphasize that anthropogenic climate-change impacts terrestrial and aquatic ecosystems alike. Acidification occurs because the ocean absorbs CO2 at a rate proportional with the concentration of this gas in the atmosphere and, once dissolved, CO2 becomes carbonic acid (H2CO3), which in turn releases protons (H+) — in simple terms, pH is the concentration of protons (see video about ocean acidification): Read the rest of this entry »





Grim tale of global shark declines

25 06 2015
Please don't eat me

Please don’t eat me

How do you prevent declines of species you cannot even see? This is (and has always been) the dilemma for fisheries because, well, humans don’t live underwater. Even when we strap on a metal tank full of air and a pair of fins, we’re still more or less like wounded astronauts peering through a narrow window of glass at the huge, largely empty, ocean space. It’s little wonder then that we have a fairly crap system of estimating fish abundance, and an even worse track record of managing them sustainably.

But humans love to eat fish – the total world estimate of legal fisheries landings is something in the vicinity of 190 million tonnes in 2013, up from 18 million tonnes in 1950 (according to FAO). We’re probably familiar with some of the losers of that massive harvest, with species like tunas, bill fishes and orange roughy making the news for catastrophic declines in abundance over the last 30-40 years. And we’re not even talking about the estimated tragedy that is illegal, unreported and unregulated (IUU) fishing.

Back in 1999, the FAO started to report that sharks – the new-ish target of many world fisheries resulting from the commercial extinction of many other fin fish fisheries – we’re starting to take the hit. Once generally ignored by fishing industries, sharks soon became popular target species. Then in 2003, Julia Baum and colleagues famously (and somewhat controversially) sounded the alarm for sharks in the Gulf of Mexico by some claims of major and catastrophic declines of large, predatory sharks. While some of the subsequent to-ing and fro-ing in the literature challenged these claims, Baum’s excellent work was ultimately vindicated.

Since then, more and more evidence that sharks are in trouble has surfaced, including the assessment of the reported (again, only legal) catch indicated heavy depletion of coastal sharks even by 1975, and the estimate that 25% of all shark and ray species have an elevated extinction risk, mainly resulting from overfishing. Now even the direct fisheries landings statistics are confirming this grim tale. Read the rest of this entry »