A plant’s adaptive traits don’t follow climate conditions as you might expect

27 03 2020


Just a quick post today, my last one for March. Like probably most of you, I’ve been trying to pretend to be as normal as possible despite the COVID-19 surrealism all around me. But even COVID-19 has shifted my research to a small degree.

But I’m not going to talk about the global pandemic right now (I can almost hear the collective sigh of relief). Instead, I’m going to go back to topic and discuss a paper that I’ve just co-authored.

Last year I went to China’s Yunnan Province where I met some fantastic colleagues at the Xishuangbanna Tropical Botanical Garden who were doing some very cool stuff with the variation in plant functional traits across environmental gradients.

Well, those colleagues invited me to participate in one those research projects, and I’m happy to say that the result has just been published in Forests.

Measuring the functional traits of different alpine trees species in the Changbai Mountains of far north-eastern China (no, I didn’t get to go there), the research set out to test how these varied among species and elevation.

Of course, one expects that different trees use different combinations of traits to survive the rigours of mountain life (high variation in temperature, freezing, wind, etc.), but generally speaking, you might expect things like xylem vessel diameter and density to change more or less monotonically (i.e., changing in a consistent manner as elevation rises or falls). This is because trees should adapt their traits to the local conditions as best they can. Read the rest of this entry »

In pursuit of an ecological resilience in the Anthropocene

3 03 2020

Changing TidesAn excerpt from Alejandro Frid‘s new book, Changing Tides: An Ecologist’s Journey to Make Peace with the Anthropocene (published first in Sierra, with photos courtesy of New Society Publishers)

The birth of my daughter, in 2004, thrust upon me a dual task: to be scientifically realistic about all the difficult changes that are here to stay, while staying humanly optimistic about the better things that we still have.

By the time my daughter turned eleven, I had jettisoned my nos­talgia for the Earth I was born into in the mid-196os—a planet that, of course, was an ecological shadow of Earth 100 years before, which in turn was an ecological shadow of an earlier Earth. The pragmatist in me had embraced the Anthropocene, in which humans dominate all biophysical processes, and I ended up feeling genuinely good about some of the possible futures in which my daughter’s generation might grow old.

It was a choice to engage in a tough situation. An acknowledgement of rapid and uninvited change. A reaffirmed commitment to everything I have learned, and continue to learn, as an ecologist working with Indigenous people on marine conservation. Fundamental to this perspective is the notion of resilience: the ability of someone or something—a culture, an ecosystem, an economy, a person—to absorb shocks yet still maintain their essence.

But what is essence? Read the rest of this entry »

Influential conservation ecology papers of 2019

24 12 2019

Bradshaw-Waves breaking on rocks Macquarie Island
As I’ve done for the last six years, I am publishing a retrospective list of the ‘top’ 20 influential papers of 2109 as assessed by experts in F1000 Prime (in no particular order). See previous years’ lists here: 20182017, 20162015, 2014, and 2013.







Read the rest of this entry »

Adult disguises

2 12 2019

Skilled ornithologists can tell the age of a bird by the look of its feathers. But many species are advancing the moult of their first adult plumage in response to global warming, and the youngsters look more similar to the adults now than two centuries ago.

R Graphics Output

The clothes don’t make the (wo)man, but how we dress sends out a lot of information about our tastes, emotional state, or financial situation. In nature, where species have evolved to exploit all kinds of physical and chemical cues, visual communication determines a wealth of feeding and reproductive strategies (1).

Birds are familiar to all of us by the beauty and variety of their plumages (see extreme examples commented by David Attenborough here, here and here), which bird fans use to tell juveniles from males, males from females and breeders from migrants. In evolutionary time, birds have gradually moved away from tree-bark browns and tree-leaf greens and, due to functional requirements, modern feathers only span about one third of the colours these animals can perceive (2). They obtain yellows, oranges, and reds from carotenoid-containing food, dark colours from melanin pigment of own synthesis, and the so-called structural colours depend on how light reflects on the barbs of the feathers (2).

Plumage, across its entire range of designs, is a factor crucial to the life history of our feathery friends and, consequently, to evaluate how and how much anthropogenic climate change is impacting them (3).

Plumage and temperature

We know that mammals and birds are modifying their fur and feathers to optimise camouflage against landscapes with more or less snow (4), but less-known are the implications of climate change for feather moulting. Read the rest of this entry »

Climate change and humans together pushed Australia’s biggest beasts to extinction

25 11 2019

people-megafaunaOver the last 60,000 years, many of the world’s largest species disappeared forever. Some of the largest that we generally call ‘megafauna’ were first lost in Sahul — the super-continent formed by the connection of Australia and New Guinea during periods of low sea level. The causes of these extinctions have been heavily debated for decades within the scientific community.

Three potential drivers of these extinctions have been suggested. The first is climate change that assumes an increase in arid conditions that eventually became lethal to megafauna. The second proposed mechanism is that the early ancestors of Aboriginal people who either hunted megafauna species to extinction, or modified ecosystems to put the largest species at a disadvantage. The third and most nuanced proposed driver of extinction is the combination of the first two.

The primary scientific tools we scientists use to determine which of these proposed causes of extinction have the most support are dated fossil records from the extinct species themselves, as well as archaeological evidence from early Aboriginal people. Traditionally, the main way we use these data is to construct a timeline of when the last fossil of a species was preserved, and compare this to evidence indicating when people arrived. We can also reconstruct climate patterns back tens of thousands of years using models similar to the ones used today to predict future climates. Based on the comparison of all of these different timelines, we conclude that abrupt climate changes in the past were influential if they occurred at or immediately before a recorded extinction event. On the other hand, if megafauna extinctions occur immediately after humans are thought to have arrived, we attribute more weight to human arrival as a driver.

Read the rest of this entry »

What is a ‘mass extinction’ and are we in one now?

13 11 2019

(reproduced from The Conversation)

For more than 3.5 billion years, living organisms have thrived, multiplied and diversified to occupy every ecosystem on Earth. The flip side to this explosion of new species is that species extinctions have also always been part of the evolutionary life cycle.

But these two processes are not always in step. When the loss of species rapidly outpaces the formation of new species, this balance can be tipped enough to elicit what are known as “mass extinction” events.

Read more: Climate change is killing off Earth’s little creatures

A mass extinction is usually defined as a loss of about three quarters of all species in existence across the entire Earth over a “short” geological period of time. Given the vast amount of time since life first evolved on the planet, “short” is defined as anything less than 2.8 million years.

Since at least the Cambrian period that began around 540 million years ago when the diversity of life first exploded into a vast array of forms, only five extinction events have definitively met these mass-extinction criteria.

These so-called “Big Five” have become part of the scientific benchmark to determine whether human beings have today created the conditions for a sixth mass extinction.

An ammonite fossil found on the Jurassic Coast in Devon. The fossil record can help us estimate prehistoric extinction rates. Corey Bradshaw, Author provided

Read the rest of this entry »

Victoria, please don’t aerial-bait dingoes

10 10 2019

Here’s a submission to Victoria’s proposed renewal of special permission from the Commonwealth to poison dingoes:

dingo with bait

08 October 2019

Honourable Lily D’Ambrosio MP
Minister for Energy, Environment and Climate Change
Level 16, 8 Nicholson Street, East Melbourne, VIC 3002



The Hon Jaclyn Symes, Minister for Agriculture, Victoria


Dr Sally Box, Threatened Species Commissioner


The Hon Sussan Ley MP, Minister for Environment, Australia



Dear Minister,

The undersigned welcome the opportunity to comment on the proposed renewal of special permission from the Commonwealth under Sections 18 and 18A of the Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) to undertake aerial 1080 baiting in six Victorian locations for the management of ‘wild dogs’. This raises serious concerns for two species listed as threatened and protected in Victoria: (1) dingoes and (2) spot-tailed quolls (Dasyurus maculatus).

First, we must clarify that the terminology ‘wild dog’ is not appropriate when discussing wild canids in Australia. One of the main discussion points at the recent Royal Zoological Society of NSW symposium ‘Dingo Dilemma: Cull, Contain or Conserve’ was that the continued use of the terminology ‘wild dog’ is not justified because wild canids in Australia are predominantly dingoes and dingo hybrids, and not, in fact, feral domestic dogs. In Victoria, Stephens et al. (2015) observed that only 5 out of 623 wild canids (0.008%) sampled were feral domestic dogs with no evidence of dingo ancestry. This same study determined that 17.2% of wild canids in Victoria were pure or likely pure dingoes and 64.4% were hybrids with greater than 60% dingo ancestry. Additionally, comparative studies by Jones (1988, 1990 and 2009) observed that dingoes maintained a strong phenotypic identity in the Victorian highlands over time, and perceptively ‘wild dog’ like animals were more dingo than domestic dog.

As prominent researchers in predator ecology, biology, archaeology, cultural heritage, social science, humanities, animal behaviour and genetics, we emphasise the importance of dingoes in Australian, and particularly Victorian, ecosystems. Dingoes are the sole non-human, land-based, top predator on the Australian mainland. Their importance to the ecological health and resilience of Australian ecosystems cannot be overstated, from regulating wild herbivore abundance (e.g., various kangaroo species), to reducing the impacts of feral mesopredators (cats, foxes) on native marsupials (Johnson & VanDerWal 2009; Wallach et al. 2010; Letnic et al. 20122013; Newsome et al. 2015; Morris & Letnic 2017). Their iconic status is important to First Nations people and to the cultural heritage of all Australians. Read the rest of this entry »