Should we bring back the thylacine? We asked 5 experts

17 08 2022
Tasmanian Museum and Art Gallery

Signe Dean, The Conversation

In a newly announced partnership with Texas biotech company Colossal Biosciences, Australian researchers are hoping their dream to bring back the extinct thylacine is a “giant leap” closer to fruition.

Scientists at University of Melbourne’s TIGRR Lab (Thylacine Integrated Genetic Restoration Research) believe the new partnership, which brings Colossal’s expertise in CRISPR gene editing on board, could result in the first baby thylacine within a decade.

The genetic engineering firm made headlines in 2021 with the announcement of an ambitious plan to bring back something akin to the woolly mammoth, by producing elephant-mammoth hybrids or “mammophants”.

But de-extinction, as this type of research is known, is a highly controversial field. It’s often criticised for attempts at “playing God” or drawing attention away from the conservation of living species. So, should we bring back the thylacine? We asked five experts.

Read the rest of this entry »




Best and worst countries by different environmental indicators

15 06 2022

I’ll preface this post with a caveat — the data herein are a few years old (certainly pre-COVID), so things have likely changed a bit. Still, I think the main message holds.


Many years ago, I compiled seven different national-level measures of environmental degradation to show that countries with the largest human populations, and hence, the largest economies, had done the most environmental damage — not only to their own resources, but to the world’s in general.

That last observation is important because there are really two main ways to quantify a country’s environmental performance. First, there is its relative environmental damage, which essentially means what proportion of its own resources a country has pilfered or damaged. This type of measure standardises the metrics to account for the different areas of countries (e.g., Russia versus Singapore) and how much of, say, forests, they had to start with, and what proportion of them they have thus far destroyed.

Looking at it this way, small countries with few large-scale industries came out in the lead as the least-damaged environmentally — the least environmentally damaged country according this metric is Cape Verde (followed by Central African Republic, Swaziland, Niger, and Djibouti).

However, another way to look at it is how much of the overall contribution to the world’s environmental damage each country is responsible, which of course implies that the countries with the highest amounts of resources damaged in absolute terms (i.e., the biggest, most populous ones) disproportionately contribute more to global environmental damage.

Using this absolute metric, the countries with the greatest overall damage are Brazil (largely due to the destruction of the Amazon and its other forests), the USA (for its greenhouse-gas emissions and conversion of its prairies to farmland), and China (for its water pollution, deforestation, and carbon emissions). On the flip side, this means that the smallest countries with the fewest people are ranked ‘better’ because of their lower absolute contribution to the world’s total environmental damage.

Looking more closely at how countries do relative to each other using different and more specific measures of environmental performance, the best-known and most-reported metric is the ecological footprint. This measures the ecological ‘assets’ that any particular population of people requires to produce the natural resources it consumes and to absorb its wastes.

Read the rest of this entry »




Fallacy of zero-extinction targets

20 05 2022

Nearly a decade ago (my how time flies*), I wrote a post about the guaranteed failure of government policies purporting no-extinction targets within their environmental plans. I was referring to the State of South Australia’s (then) official policy of no future extinctions.

In summary, zero- (or no-) extinction targets at best demonstrate a deep naïvety of how ecology works, and at worst, waste a lot of resources on interventions doomed to fail.

1. Extinctions happen all the time, irrespective of human activity;

2. Through past environmental degradation, we are guaranteed to see future extinctions because of extinction lags;

3. Few, if any, of the indicators of biodiversity change show improvement.

4. Climate change will also guarantee additional (perhaps even most) future extinctions irrespective of Australian policies.

I argued that no-extinction policies are therefore disingenuous to the public in the extreme because they sets false expectations, engender disillusionment after inevitable failure, and ignores the concept of triage — putting our environment-restoration resources toward the species/systems with the best chance of surviving (uniqueness notwithstanding).

Read the rest of this entry »




Cartoon guide to biodiversity loss LXXI

11 04 2022

Now that the Australian election has been called for next month, here are a few cartoon reminders of the state of environmental politics in this country (hint: they’re abysmal). I’ve surpassed my normal 6 cartoons/post here in this second set for 2022 because, well, our lives depend on the outcome of 21 May. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »




The sixth mass extinction is happening now, and it doesn’t look good for us

2 03 2022

Mounting evidence is pointing to the world having entered a sixth mass extinction. If the current rate of extinction continues we could lose most species by 2200. The implication for human health and wellbeing is dire, but not inevitable.

In the timeline of fossil evidence going right back to the first inkling of any life on Earth — over 3.5 billion years ago — almost 99 percent of all species that have ever existed are now extinct. That means that as species evolve over time — a process known as ‘speciation’ — they replace other species that go extinct.

Extinctions and speciations do not happen at uniform rates through time; instead, they tend to occur in large pulses interspersed by long periods of relative stability. These extinction pulses are what scientists refer to as mass extinction events.

The Cambrian explosion was a burst of speciation some 540 million years ago. Since then, at least five mass extinction events have been identified in the fossil record (and probably scores of smaller ones). Arguably the most infamous of these was when a giant asteroid smashed into Earth about 66 million years ago in what is now the Gulf of Mexico. The collision vapourised species immediately within the blast zone. Later, species were killed off by climate change arising from pulverised particulates suspended in the atmosphere, as well as intense volcano activity stimulated by the buckling of the Earth’s crust from the asteroid’s impact. Together, about 76 percent of all species around at the time went extinct, of which the disappearance of the dinosaurs is most well-known. But dinosaurs didn’t disappear altogether — the survivors just evolved into birds.

Read the rest of this entry »




Influential conservation papers of 2021

5 01 2022

Following my annual tradition, I present the retrospective list of the ‘top’ 20 influential papers of 2021 as assessed by experts in Faculty Opinions (formerly known as F1000). These are in no particular order. See previous years’ lists here: 2020, 201920182017201620152014, and 2013.


Amazonia as a carbon source linked to deforestation and climate change — “… confirms what the sparse forest inventory has suggested, that climate change and land-use change is driving Amazonian ecosystems toward carbon sinks. … the research team provides a robust estimate of the carbon dynamics of one of the world’s most important ecosystems and provides insights into the role of land use change and potentials for mitigating direct carbon losses in the future.

Organic and conservation agriculture promote ecosystem multifunctionality — “… a very clear insight into the trade-offs between the different ecosystem services and indicate that yield and product quality are lower in organic systems compared to conventional systems, yet organic systems have higher economic performance due to higher product prices and subsidies.

Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification — “… even with similar richness, community function is very likely to be perturbed by ocean warming/acidification with unpredictable impacts on economically important species such as fish and corals.

Local conditions magnify coral loss after marine heatwaves — “… show that climate-induced coral loss is greater in areas with elevated seaweed abundance and elevated sea urchin densities, both of which commonly result from local overfishing … effective local management can synergize with global efforts to mitigate climate change and help coral reefs survive the Anthropocene.

Large ecosystem-scale effects of restoration fail to mitigate impacts of land-use legacies in longleaf pine savannas — “… while restoration can have major benefits in longleaf savannas, land-use legacies have clear effects on many aspects of the ecosystem.

Read the rest of this entry »




An eye on the past: a view to the future

29 11 2021

originally published in Brave Minds, Flinders University’s research-news publication (text by David Sly)

Clues to understanding human interactions with global ecosystems already exist. The challenge is to read them more accurately so we can design the best path forward for a world beset by species extinctions and the repercussions of global warming.


This is the puzzle being solved by Professor Corey Bradshaw, head of the Global Ecology Lab at Flinders University. By developing complex computer modelling and steering a vast international cohort of collaborators, he is developing research that can influence environmental policy — from reconstructing the past to revealing insights of the future.

As an ecologist, he aims both to reconstruct and project how ecosystems adapt, how they are maintained, and how they change. Human intervention is pivotal to this understanding, so Professor Bradshaw casts his gaze back to when humans first entered a landscape – and this has helped construct an entirely fresh view of how Aboriginal people first came to Australia, up to 75,000 years ago.

Two recent papers he co-authored — ‘Stochastic models support rapid peopling of Late Pleistocene Sahul‘, published in Nature Communications, and ‘Landscape rules predict optimal super-highways for the first peopling of Sahul‘ published in Nature Human Behaviour — showed where, how and when Indigenous Australians first settled in Sahul, which is the combined mega-continent that joined Australia with New Guinea in the Pleistocene era, when sea levels were lower than today.

Professor Bradshaw and colleagues identified and tested more than 125 billion possible pathways using rigorous computational analysis in the largest movement-simulation project ever attempted, with the pathways compared to the oldest known archaeological sites as a means of distinguishing the most likely routes.

The study revealed that the first Indigenous people not only survived but thrived in harsh environments, providing further evidence of the capacity and resilience of the ancestors of Indigenous people, and suggests large, well-organised groups were able to navigate tough terrain.

Read the rest of this entry »




Avoiding a ghastly future — The Science Show

1 10 2021

Just thought I’d share the audio of an interview I did with the famous Robyn Williams of ABC Radio National‘s The Science Show.

I’d be surprised if any Australians with even a passing interest in science could claim not to have listened to the Science Show before, and I suspect a fair mob of people overseas would be in the same boat.

It was a real privilege to talk with Robyn about our work on the ghastly future, and as always, the production value is outstanding.

Thank you, Robyn and the ABC.

Listen below, or link to the interview directly.





It’s a tough time for young conservation scientists

24 08 2021

Sure, it’s a tough time for everyone, isn’t it? But it’s a lot worse for the already disadvantaged, and it’s only going to go downhill from here. I suppose that most people who read this blog can certainly think of myriad ways they are, in fact, still privileged and very fortunate (I know that I am).

Nonetheless, quite a few of us I suspect are rather ground down by the onslaught of bad news, some of which I’ve been responsible for perpetuating myself. Add lock downs, dwindling job security, and the prospect of dying tragically due to lung infection, many have become exasperated.

I once wrote that being a conservation scientist is a particularly depressing job, because in our case, knowledge is a source of despair. But as I’ve shifted my focus from ‘preventing disaster’ to trying to lessen the degree of future shittyness, I find it easier to get out of bed in the morning.

What can we do in addition to shifting our focus to making the future a little less shitty than it could otherwise be? I have a few tips that you might find useful:

Read the rest of this entry »




Cartoon guide to biodiversity loss LXVII

13 08 2021

Here is the fourth set of biodiversity cartoons for 2021. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »




Is the IPCC finally catching up with the true severity of climate change?

24 06 2021

I’m not in any way formally involved in either the IPCC or IPBES, although I’ve been involved indirectly in analysing many elements of both the language of the reports and the science underlying their predictions.


Today, The Guardian reported that a leaked copy of an IPCC report scheduled for release soon indicated that, well, the climate-change situation is in fact worse than has been previously reported in IPCC documents.

If you’re a biologist, climatologist, or otherwise-informed person, this won’t come as much of a surprise. Why? Well, the latest report finally recognises that the biosphere is not just some big balloon that slowly inflates or deflates with the whims of long-term climate variation. Instead, climate records over millions of years show that the global climate can and often does shift rapidly between different states.

This is the concept of ‘tipping points’.

Read the rest of this entry »




Cartoon guide to biodiversity loss LXVI

29 05 2021

Here is the third set of biodiversity cartoons for 2021. See full stock of previous ‘Cartoon guide to biodiversity loss’ compendia here.


Read the rest of this entry »




Worried about Earth’s future? Well, the outlook is worse than even scientists can grasp

14 01 2021

Daniel Mariuz/AAP

Corey J. A. Bradshaw, Flinders University; Daniel T. Blumstein, University of California, Los Angeles, and Paul Ehrlich, Stanford University

Anyone with even a passing interest in the global environment knows all is not well. But just how bad is the situation? Our new paper shows the outlook for life on Earth is more dire than is generally understood.

The research published today reviews more than 150 studies to produce a stark summary of the state of the natural world. We outline the likely future trends in biodiversity decline, mass extinction, climate disruption and planetary toxification. We clarify the gravity of the human predicament and provide a timely snapshot of the crises that must be addressed now.

The problems, all tied to human consumption and population growth, will almost certainly worsen over coming decades. The damage will be felt for centuries and threatens the survival of all species, including our own.

Our paper was authored by 17 leading scientists, including those from Flinders University, Stanford University and the University of California, Los Angeles. Our message might not be popular, and indeed is frightening. But scientists must be candid and accurate if humanity is to understand the enormity of the challenges we face.

Girl in breathing mask attached ot plant in container

Humanity must come to terms with the future we and future generations face. Shutterstock

Getting to grips with the problem

First, we reviewed the extent to which experts grasp the scale of the threats to the biosphere and its lifeforms, including humanity. Alarmingly, the research shows future environmental conditions will be far more dangerous than experts currently believe. Read the rest of this entry »





Time for a ‘cold shower’ about our ability to avoid a ghastly future

13 01 2021

I wish it need not have happened in my time,” said Frodo. “So do I,’ said Gandalf, “and so do all who live to see such times. But that is not for them to decide. All we have to decide is what to do with the time that is given us.”

Frodo Baggins and Gandalf, The Fellowship of the Ring

Today, 16 high-profile scientists and I published what I describe as a ‘cold shower’ about society’s capacity to avoid a ghastly future of warfare, disease, inequality, persecution, extinction, and suffering.

And it goes way beyond just the plight of biodiversity.

No one who knows me well would mistake me for an optimist, try as I might to use my colleagues’ and my research for good. Instead, I like to describe myself as a ‘realist’. However, this latest paper has made even my gloomier past outputs look downright hopeful.

And before being accused of sensationalism, let me make one thing abundantly clear — I sincerely hope that what we describe in this paper does not come to pass. Not even I am that masochistic.

I am also supportive of every attempt to make the world a better place, to sing about our successes, regroup effectively from our failures, and maintain hope in spite of evidence to the contrary.

But failing to acknowledge the magnitude and the gravity of the problems facing us is not just naïve, it is positively dangerous and potentially fatal.

It is this reason alone that prompted us to write our new paper “Underestimating the challenges of
avoiding a ghastly future
” just published in the new journal, Frontiers in Conservation Science.

Read the rest of this entry »




Influential conservation papers of 2020

19 12 2020

Following my late-December tradition, I present — in no particular order — a retrospective list of the ‘top’ 20 influential papers of 2020 as assessed by experts in Faculty Opinions (formerly known as F1000). See previous years’ lists here: 201920182017201620152014, and 2013.


Life in fluctuating environments — “… it tackles a fundamental problem of bio-ecology (how living beings cope with the fluctuations of the environment) with a narrative that does not make use of the cumbersome formulas and complicated graphs that so often decorate articles of this kind. Instead, the narrative and the illustrations are user-friendly and easy to understand, while being highly informative.

Forest carbon sink neutralized by pervasive growth-lifespan trade-offs — “… deals with a key process in the global carbon cycle: whether climate change (CC) is enhancing the natural sink capacity of ecosystems or not.

Bending the curve of terrestrial biodiversity needs an integrated strategy — “… explores different scenarios about the consequences of habitat conversion on terrestrial biodiversity.

Rebuilding marine life — “The logic is: leave nature alone, and it will come back. Not necessarily as it was before, but it will come back.

Towards a taxonomically unbiased European Union biodiversity strategy for 2030 — “… states that the emperor has no clothes, providing an estimate of the money dedicated to biodiversity conservation (a lot of money) and then stating that the bulk of biodiversity remains unstudied and unprotected, while efforts are biased towards just a few “popular” species.

Read the rest of this entry »




Grand Challenges in Global Biodiversity Threats

8 10 2020

Last week I mentioned that the new journal Frontiers in Conservation Science is now open for business. As promised, I wrote a short article outlining our vision for the Global Biodiversity Threats section of the journal. It’s open-access, of course, so I’m also copying here on ConservationBytes.com.


Most conservation research and its applications tend to happen most frequently at reasonably fine spatial and temporal scales — for example, mesocosm experiments, single-species population viability analyses, recovery plans, patch-level restoration approaches, site-specific biodiversity surveys, et cetera. Yet, at the other end of the scale spectrum, there have been many overviews of biodiversity loss and degradation, accompanied by the development of multinational policy recommendations to encourage more sustainable decision making at lower levels of sovereign governance (e.g., national, subnational).

Yet truly global research in conservation science is fact comparatively rare, as poignantly demonstrated by the debates surrounding the evidence for and measurement of planetary tipping points (Barnosky et al., 2012; Brook et al., 2013; Lenton, 2013). Apart from the planetary scale of human-driven disruption to Earth’s climate system (Lenton, 2011), both scientific evidence and policy levers tend to be applied most often at finer, more tractable research and administrative scales. But as the massive ecological footprint of humanity has grown exponentially over the last century (footprintnetwork.org), robust, truly global-scale evidence of our damage to the biosphere is now starting to emerge (Díaz et al., 2019). Consequently, our responses to these planet-wide phenomena must also become more global in scope.

Conservation scientists are adept at chronicling patterns and trends — from the thousands of vertebrate surveys indicating an average reduction of 68% in the numbers of individuals in populations since the 1970s (WWF, 2020), to global estimates of modern extinction rates (Ceballos and Ehrlich, 2002; Pimm et al., 2014; Ceballos et al., 2015; Ceballos et al., 2017), future models of co-extinction cascades (Strona and Bradshaw, 2018), the negative consequences of invasive species across the planet (Simberloff et al., 2013; Diagne et al., 2020), discussions surrounding the evidence for the collapse of insect populations (Goulson, 2019; Komonen et al., 2019; Sánchez-Bayo and Wyckhuys, 2019; Cardoso et al., 2020; Crossley et al., 2020), the threats to soil biodiversity (Orgiazzi et al., 2016), and the ubiquity of plastic pollution (Beaumont et al., 2019) and other toxic substances (Cribb, 2014), to name only some of the major themes in global conservation. 

Read the rest of this entry »




Australia: the world’s unsustainable ‘mine’

16 09 2020

The COVID-19 pandemic has finally woken a few people up in this country. The closure of our automotive industry, the volatility of the mining sector, the deteriorating relations with our largest trading partner (China) — all these have seem to have acted like smelling salts for our semi-conscious leaders.

Australia has an abysmal manufacturing capacity, and I know that trying to fix this is very much on the table now at the highest levels. Australia is for the most part a 7.7 million km2 ‘mine’ to the world — we of course dig up our minerals and ship them overseas, and we export shit-tonnes of coal.

But much of our agricultural produce goes overseas too, including the very poorly valued live-export industry that takes the little water and minerals already in Australian soils and turns them inefficiently into livestock that is then sold overseas whole and living. Even putting aside the woeful animal-welfare issues this entails, it’s not much of a value-add and really a poor business model.

Read the rest of this entry »




The only constant is change

27 07 2020

I just wrote a piece for the Flinders University alumnus magazine — Encounter — and I thought I’d share it here.

encounter-2020_Page_01

As an ecologist concerned with how life changes and adapts to the vagaries of climate and pervasive biological shuffling, ‘constant change’ is more than just a mantra — it is, in fact, the mathematical foundation of our entire discipline.

But if change is inevitable, how can we ensure it is in the right direction?

Take climate change for example. Since the Earth first formed it has experienced abrupt climate shifts many times, both to the detriment of most species in existence at any given time, and to the advantage of those species evolving from the ashes.

For more than 3.5 billion years, species have evolved and gone extinct, such that more than 99% of all species that have ever existed are now confined, permanently, to the vaults of the past.

Read the rest of this entry »





A brief history of environmentalism in Australia since European invasion

29 06 2020

A (heavily) modified and updated excerpt from our 2015 book Killing the Koala and Poisoning the Prairie

The Australian awakening to its environmental dilemmas was a little more sluggish than elsewhere in the New World. Not only did Europeans arrive in Australia en masse only about 250 years ago, they had a more limited view of their new landscape, and were, at least initially, constrained by the harshness of their new home. Those mostly British settlers brought with them the fully formed ideas of development and progress shaped by centuries of land use in the Motherland. That ideal of conquering wilderness and transforming it into the bucolic landscape typical of the English countryside was their driving force.

The early settlers viewed the Australian bush as ugly and monotonous, features that could only be overcome by human occupation and cultivation. This neo-classical view, homesickness and the Romantic desire to transform their homes and farms into an image of those from their homeland, were defining forces in early Australian history. Unlike in Europe, though, where there were cultural taboos associated with forest degradation — bound in mysticism, spirituality, folklore and politics — no such restrictions applied to the unfamiliar Australian bush.

In fact, the Australian government passed the Crown Lands Alienation Act in 1861, which was designed to ‘open up’ the colony to settlement, and penalized landholders for not clearing the land (via a forfeit of the land back to the Crown). That single Act guaranteed the deforestation wave would continue for over a 100 years. That, and the persistent desire to make the new land look as much as possible as the old, has ensured that continuing demise of Australia’s biodiversity.

Figure 3.3-Clearing for Agriculture

Clearing for agriculture in early settlement. Anonymous, Government Farm at Castle Hill, circa 1803. Watercolour, 24×35 cm. Permission to reproduce courtesy of the Mitchell Library, State Library of New South Wales

Interestingly, clashes over land use between the settlers and Indigenous peoples were probably some of the first demonstrations of what today we would call ‘environmentalism’ in Australia. Aboriginal nations were intent on preserving their way of life (and indeed, their lives) in the face of the settlers’ onslaught. But this was seen, at most, as a mild inconvenience for the new Australians who in response invoked the idea of terra nullius — that no one owned the land, making it available to anyone (white) who wished to ‘improve’ (clear) it. Read the rest of this entry »





Extinction Anxiety

21 05 2020

Earlier this week, the SBS show The Feed did a short segment called ‘Extinction Anxiety’ where I talked with host Alice Matthews about biodiversity extinctions. Given that it has so far only been available in Australia, I made a copy here for others to view.

For more information on the state of global biodiversity, see this previous post.

 

 

CJA Bradshaw








%d bloggers like this: