Never underestimate the importance of a good figure

27 07 2022

I seem to end up frequently explaining to students and colleagues that it’s a good idea to spend a good deal of time to make your scientific figures the most informative and attractive possible.

But it’s a fine balance between overly flashy and downright boring. Needless to say, empirical accuracy is paramount.

But why should you care, as long as the necessary information is transferred to the reader? The most important answer to that question is that you are trying to catch the attention of editors, reviewers, and readers alike in a highly competitive sea of information. Sure, if the work is good and the paper well-written, you’ll still garner a readership; however, if you give your readers a bit of visual pleasure in the process, they’re much more likely to (a) remember and (b) cite your paper.

I try to ask myself the following when creating a figure — without unnecessary bells and whistles, would I present this figure in a presentation to a group of colleagues? Would I present it to an audience of non-experts? Would I want this figure to appear in a news article about my work? Of course, all of these venues require differing degrees of accuracy, complexity, and aesthetics, but a good figure should ideally serve to educate across very different audiences simultaneously.

A sub-question worth asking here is whether you think a colleague would use your figure in one of their presentations. Think of the last time you made a presentation and found that perfect figure that brilliantly portrays the point you are trying to get across. That’s the kind of figure you should strive to make in your own research papers.

I therefore tend to spend quite a bit of time crafting my figures, and after years of making mistakes and getting a few things right, and retrospectively discovering which figures appear to garner more attention than others, I can offer some basic advice about the DOs and DON’Ts of figure making. Throughout the following section I provide some examples from my own papers that I think demonstrate some of the concepts.

tables vs. graphs — The very first question you should ask yourself is whether you can turn that boring and ugly table into a graph of some sort. Do you really need that table? Can you not just translate the cell entries into a bar/column/xy plot? If you can, you should. When a table cannot easily be translated into a figure, most of the time it probably belongs in the Supplementary Information anyway.

Read the rest of this entry »




Smoothing over content issues with co-author agreements

7 10 2021

I’ve written before about guidelines for co-authorship that I’ve formulated after years of accrued hit-and-miss experiences. Here, ‘hits’ refer to positive experiences (thankfully, the majority), and the ‘misses’ obviously refer to those times where co-authorship had become a contentious issue. While guidelines can go a long way to reducing the probability of nasty in-fighting occurring, there is never a water-tight approach that can avoid all problems.

However, the more I delve into multidisciplinary research that covers potentially controversial subjects, the more preparation for combatting future points of contention becomes necessary. What do you do when different specialists contribute material to a paper with which some other co-authors don’t necessarily agree?

Yes, this conundrum is real, and potentially flies in the face of the standard statement (and their variants) needed for most journal submissions these days:

All authors contributed to the article and approved the submitted version

Note, however, that the statement almost always includes the word ‘approved’ rather than ‘agreed with’. A subtle difference, I know, but it’s an important one.

This is where a pre-submission ‘Co-Author Agreement’ comes into play. Until quite recently, I have only ever prepared one such a document before, and that one was not terribly comprehensive.

But I’ve recently been working with a large, multidisciplinary group of specialists for which an official Co-Author Agreement made a lot of sense.

What is a Co-Author Agreement? It’s essentially a contract that prospective co-authors sign prior to submission of the manuscript to a journal so that potential disagreements can be dealt with more officiously down the track.

I looked for templates online and found a few that were suitable, and then modified it to our specific conditions.

I thought it might be a good idea to pass along a generalised template for a good Co-Author Agreement that you can modify according to your needs. I’ve broken down the content into sections:

Read the rest of this entry »




Good English and the scientific career: hurdles for non-native English speakers

13 02 2019

New post from Frédérik Saltré originally presented on the GE.blog.


It’s no secret that to be successful in academia, it’s not enough just to be a good scientist — being able to formulate and test hypotheses. You also need to be able to communicate that science effectively.

This implies a good command of the English language for anyone who wants a career in science. Mastering English (or not) will directly affect your work opportunities such as publishing, establishing networks at conferences, taking leadership of working groups, contributing to lab meetings (there is nothing worse than feeling left out of a conversation because of language limitations), and so forth.

But when it comes to language skills, not everyone is created equal because those skills mostly depend on a person’s background (e.g., learning English as a child or later in life), cultural reluctance, fear of making mistakes, lack of confidence, or simply brain design — this last component might offend some, but it appears that some people just happen to have the specific neuronal pathways to learn languages better than others. Whatever the reason, the process of becoming a good scientist is made more difficult if you happen not to have that specific set of neuronal pathways, even though not being a native English speaker does not prevent from being academically successful.

Read the rest of this entry »




The Effective Scientist

22 03 2018

final coverWhat is an effective scientist?

The more I have tried to answer this question, the more it has eluded me. Before I even venture an attempt, it is necessary to distinguish the more esoteric term ‘effective’ from the more pedestrian term ‘success’. Even ‘success’ can be defined and quantified in many different ways. Is the most successful scientist the one who publishes the most papers, gains the most citations, earns the most grant money, gives the most keynote addresses, lectures the most undergraduate students, supervises the most PhD students, appears on the most television shows, or the one whose results improves the most lives? The unfortunate and wholly unsatisfying answer to each of those components is ‘yes’, but neither is the answer restricted to the superlative of any one of those. What I mean here is that you need to do reasonably well (i.e., relative to your peers, at any rate) in most of these things if you want to be considered ‘successful’. The relative contribution of your performance in these components will vary from person to person, and from discipline to discipline, but most undeniably ‘successful’ scientists do well in many or most of these areas.

That’s the opening paragraph for my new book that has finally been release for sale today in the United Kingdom and Europe (the Australasian release is scheduled for 7 April, and 30 April for North America). Published by Cambridge University Press, The Effective ScientistA Handy Guide to a Successful Academic Career is the culmination of many years of work on all the things an academic scientist today needs to know, but was never taught formally.

Several people have asked me why I decided to write this book, so a little history of its genesis is in order. I suppose my over-arching drive was to create something that I sincerely wish had existed when I was a young scientist just starting out on the academic career path. I was focussed on learning my science, and didn’t necessarily have any formal instruction in all the other varied duties I’d eventually be expected to do well, from how to write papers efficiently, to how to review properly, how to manage my grant money, how to organise and store my data, how to run a lab smoothly, how to get the most out of a conference, how to deal with the media, to how to engage in social media effectively (even though the latter didn’t really exist yet at the time) — all of these so-called ‘extra-curricular’ activities associated with an academic career were things I would eventually just have to learn as I went along. I’m sure you’ll agree, there has to be a better way than just muddling through one’s career picking up haphazard experience. Read the rest of this entry »





When to appeal a rejection

26 08 2017

BegA modified excerpt from my upcoming book for you to contemplate after your next rejection letter.

This is a delicate subject that requires some reflection. Early in my career, I believed the appeal process to be a waste of time. Having made one or two of them to no avail, and then having been on the receiving end of many appeals as a journal editor myself, I thought that it would be a rare occasion indeed when an appeal actually led to a reversal of the final decision.

It turns out that I was very wrong, but not in terms of simple functional probability that you might be thinking. Ironically, the harder it is to get a paper published in a journal, the higher the likelihood that an appeal following rejection will lead to a favourable outcome for the submitting authors. Let me explain. Read the rest of this entry »





Getting your conservation science to the right people

22 01 2016

argument-cartoon-yellingA perennial lament of nearly every conservation scientist — at least at some point (often later in one’s career) — is that the years of blood, sweat and tears spent to obtain those precious results count for nought in terms of improving real biodiversity conservation.

Conservation scientists often claim, especially in the first and last paragraphs of their papers and research proposals, that by collecting such-and-such data and doing such-and-such analyses they will transform how we manage landscapes and species to the overall betterment of biodiversity. Unfortunately, most of these claims are hollow (or just plain bullshit) because the results are either: (i) never read by people who actually make conservation decisions, (ii) not understood by them even if they read the work, or (iii) never implemented because they are too vague or too unrealistic to translate into a tangible, positive shift in policy.

A depressing state of being, I know.

This isn’t any sort of novel revelation, for we’ve been discussing the divide between policy makers and scientists for donkey’s years. Regardless, the whinges can be summarised succinctly: Read the rest of this entry »





How to review a scientific paper

30 09 2014

F6a00d834521baf69e200e55471d80f8833-800wiollowing one of the most popular posts on ConservationBytes.com, as well as in response to several requests, I’ve decided to provide a few pointers for early-career scientists for reviewing manuscripts submitted to peer-reviewed journals.

Apart from publishing your first peer-reviewed paper – whether it’s in Nature or Corey’s Journal of Bullshit – receiving that first request to review a manuscript is one of the best indications that you’ve finally ‘made it’ as a recognised scientist. Finally, someone is acknowledging that you are an expert and that your opinions and critiques are important. You deserve to feel proud when this happens.

Of course, reviewing is the backbone of the scientific process, because it is the main component of science’s pursuit of objectivity (i.e., subjectivity reduction). No other human endeavour can claim likewise.

It is therefore essential to take the reviewing process seriously, even if you do so only from the entirely selfish perspective that if you do not, no one will seriously review your own work. It is therefore much more than an altruistic effort to advance human knowledge – it is at the very least a survival mechanism. Sooner or later if you get a reputation for providing bad reviews, or refuse to do them, your own publication track record will suffer as a result.

Just like there are probably as many different (successful) ways to write a scientific paper as there are journals, most people develop their own approaches for reviewing their colleagues’ work. But just as it’s my opinion that many journal editors do an awful job of editing, I know that many reviewers do rather a shit job at their assigned tasks. This perspective comes from many years as an author, a reviewer, an editor and a mentor.

So take my advice as you will – hopefully some of it will prove useful when you review manuscripts. Read the rest of this entry »





Time to put significance out of its misery

28 07 2014

If you’ve been following this blog for a while, you’ll be no stranger to my views on what I believe is one of the most abused, and therefore now meaningless, words in scientific writing: ‘significance’ and her adjective sister, ‘significant’. I hold that it should be stricken entirely from the language of science writing.

Most science writing has become burdened with archaic language that perhaps at one time meant something, but now given the ubiquity of certain terms in most walks of life and their subsequent misapplication, many terms no longer have a precise meaning. Given that good scientific writing must ideally strive to employ the language of precision, transparency and simplicity, now-useless terminology should be completely expunged from our vocabulary.

‘Significance’ is just such a term.

Most interviews on radio or television, most lectures by politicians or business leaders, and nearly all presentations by academics at meetings of learned societies invoke ‘significant’ merely to add emphasis to the discourse. Usually it involves some sort of comparison – a ‘significant’ decline, a ‘significant’ change or a ‘significant’ number relative to some other number in the past or in some other place, and so on. Rarely is the word quantified: how much has the trend declined, how much did it change and how many is that ‘number’? What is ‘significant’ to a mouse is rather unimportant to an elephant, so most uses are as entirely subjective qualifiers employed to add some sort of ‘expert’ emphasis to the phenomenon under discussion. To most, ‘significant’ just sounds more authoritative, educated and erudite than ‘a lot’ or ‘big’. This is, of course, complete rubbish because it is the practice of using big words to hide the fact that the speaker isn’t quite as clever as he thinks he is.

While I could occasionally forgive non-scientists for not quantifying their use of ‘significance’ because they haven’t necessarily been trained to do so, I utterly condemn scientists who use the word that way. We are specifically trained to quantify, so throwing ‘significant’ around without a very clear quantification (it changed by x amount, it declined by 50 % in two years, etc.) runs counter to the very essence of our discipline. To make matters worse, you can often hear a vocal emphasis placed on the word when uttered, along with a patronising hand gesture, to make that subjectivity even more obvious.

If you are a scientist reading this, then you are surely waiting for my rationale as to why we should also ignore the word’s statistical meaning. While I’ve explained this before, it bears repeating. Read the rest of this entry »





Don’t torture your readers III

23 06 2014

TortureIt has been quite some time since I did one of these kinds of posts (see Don’t torture your readers and Don’t torture your readers II). However, given how popular they seem to be, I have decided to do a follow-up post on grammar problems that I tend to see far too often in science writing.

COMPOUND ADJECTIVES: This is a particularly abused component of scientific writing. Although it’s fairly straightforward, I’m amazed just how many people get it wrong. Most people appear to understand that when an adjective (that’s a qualifier for a noun, just in case you are a grammarling) is composed of more than one word, there is normally a hyphen that connects them:

  • e.g., ’10-m fence’, ‘high-ranking journal’, ‘population-level metric’, ‘cost-effective policy’

If two or more adjectives are given in a row, but none modifies the meaning of the others, then it is simply a case of separating them with commas:

  • e.g., ‘a long, high fence’, ‘an old, respected journal’, ‘an effective, enduring policy’

However, if the compound adjective is composed of a leading adverb (that’s a qualifier for a verb), then there is NO hyphenation:

  • e.g., ‘an extremely long fence’, ‘a closely associated phenomenon’, ‘a legally mandated policy’

There are other instances when no hyphenation is required, such as when the qualifiers are proper nouns (e.g., ‘a Shark Bay jetty’), from another language such as Latin (e.g., an ‘ab initio course’) or enclosed in quotation marks (e.g., ‘a “do it yourself” guide). Note in the last example, without the quotations, it would become ‘a do-it-yourself guide’).

A quick way to recognise whether a compound adjective should be hyphenated is to examine the terminal letters of the leading word; if the leading component ends in ‘ly’, then it is likely an adverb, and so the compound should not be hyphenated (although watch for sneaky exceptions like ‘early-career researcher’!). Read the rest of this entry »





How to write a scientific paper

22 10 2012

Several years ago, my long-time mate, colleague and co-director, Barry Brook, and I were lamenting how most of our neophyte PhD students were having a hard time putting together their first paper drafts. It’s a common problem, and most supervisors probably get their collective paper-writing wisdom across in dribs and drabs over the course of their students’ torment… errhm, PhD. And I know that every supervisor has a different style, emphasis, short-cut (or two) and focus when writing a paper, and students invariably pick at least some of these up.

But the fact that this knowledge isn’t innate, nor is it in any way taught in probably most undergraduate programmes (I include Honours in that list), means that most supervisors must bleed heavily on those first drafts presented to them by their students. Bleeding is painful for both the supervisor and student who has to clean up the mess – there has to be a better way.

Yes, there are books on the issue (see, for example, Day & Castel 2011, Hofmann 2009, Schimel 2011), but how many starting PhDs sit down and read such books cover to cover? Hell, I can barely get them to read the basic statistics texts.

So as is classic for Barry, he came up with his own approach that I like to call ‘La Méthode Brookoise’ (a tribute to another clever jeu de mots). This short-cut guide to setting up a scientific paper is simple, effective and intuitive. Sure, it was designed with ecology in mind, but it should apply to most scientific disciplines. It appeals to most of our students, and we have both been asked for copies by other supervisors over the years. Our original intention was to write a paper about writing papers to flesh out the full Méthode, but that has yet to happen.

Therefore, for the benefit of the up-and-comings (and perhaps to a few of those longer in tooth), behold La Méthode Brookoise for writing papers: Read the rest of this entry »





Supercharge Your Science V.2

24 11 2011

I suspect a lot of ConservationBytes.com readers will be attending the imminent 25th International Congress for Conservation Biology to be held in Auckland from 5-9 December 2011 (it was to be held in Christchurch, but the venue was changed after that city fell down). I’ve now been to 3 previous ICCBs myself, and it should prove to be a good, informative (and fun) meeting.

I’ll be giving a talk or two, as will some of my students and postdocs, but I’m not spruiking those here (but you’re all invited, of course).

The main reason for this short post today is to advertise for Version 2 of our (i.e., Bill Laurance and me) popular ‘Supercharge Your Science‘ workshop. Yes, the organising committee of the ICCB decided it was a good idea to accept our application to repeat our previously successful series of presentations extolling the virtues of positive and controlled media interactions, social media and good writing techniques for ‘supercharging’ the impact of one’s science. You can read more about the content of this workshop here and here.

The description of the workshop (to be held from 19.00 – 21.00 on 6 December in the SkyCity venue) on the ICCB website is: Read the rest of this entry »





The conservation biologist’s toolbox

31 08 2010

Quite some time ago I blogged about a ‘new’ book published by Oxford University Press and edited by Navjot Sodhi and Paul Ehrlich called Conservation Biology for All in which Barry Brook and I wrote a chapter entitled The conservation biologist’s toolbox – principles for the design and analysis of conservation studies.

More recently, I attended the 2010 International Meeting of the Association for Tropical Biology and Conservation (ATBC) in Bali where I gave a 30-minute talk about the chapter, and I was overwhelmed with positive responses from the audience. The only problem was that 30 minutes wasn’t even remotely long enough to talk about all the topics we covered in the chapter, and I had to skip over a lot of material.

So…, I’ve blogged about the book, and now I thought I’d blog about the chapter.

The topics we cover are varied, but we really only deal with the ‘biological’ part of conservation biology, even though the field incorporates many other disciplines. Indeed, we write:

“Conservation biology” is an integrative branch of biological science in its own right; yet, it borrows from most disciplines in ecology and Earth systems science; it also embraces genetics, dabbles in physiology and links to veterinary science and human medicine. It is also a mathematical science because nearly all measures are quantified and must be analyzed mathematically to tease out pattern from chaos; probability theory is one of the dominant mathematical disciplines conservation biologists regularly use. As rapid human-induced global climate change becomes one of the principal concerns for all biologists charged with securing and restoring biodiversity, climatology is now playing a greater role. Conservation biology is also a social science, touching on everything from anthropology, psychology, sociology, environmental policy, geography, political science, and resource management. Because conservation biology deals primarily with conserving life in the face of anthropogenically induced changes to the biosphere, it also contains an element of economic decision making.”

And we didn’t really cover any issues in the discipline of conservation planning (that is a big topic indeed and a good starting point for this can be found by perusing The Ecology Centre‘s website). So what did we cover? The following main headings give the general flavour: Read the rest of this entry »





Don’t torture your readers II

22 02 2009

The second instalment of “Don’t torture your readers” (an attempt to stimulate better writing in conservation science) follows with some more mistakes, bad grammar and personal pet peeves.

  • DECIMATE (as in ‘… the population was decimated following…’) – I’ve seen this one used way too often. It is usually invoked by the author to imply some devastating reduction in population size (somehow it sounds bad); for this reason alone, the emotive language should be avoided. However, ‘decimate’ has a specific meaning: to reduce by every ‘one in 10’ (hence the ‘deci’ prefix). If you really mean the population was reduced by 10 %, use ‘decimate’. If you are just stating the population was reduced, state by how much and avoid emotive and incorrect terms.
  • DRAMATIC(ALLY) (as in ‘… we observed a dramatic decline in…’) – another meaningless, emotive word that belongs in the theatre, not in scientific writing. Quantify your meaning instead of relying on subjective terms.
  • CRITICAL(LY) (as in ‘… highlights the critical importance of…’ – This term is generally meant to communicate some urgent need or absolute necessity. While most authors would like to think their chosen topic is ‘critical’, many neither define to whom or what the results are ‘critical’, or even what the lack thereof would entail. In some circumstances it is used to infer some sort of threshold beyond which another state dominates, so I question the need for ‘critical’ at all in conservation writing. If you are trying to inflate the importance of your work, ‘critical’ is the word to use; if you mean a threshold, then simply state so.
  • FEW versus LESS – I’m amazed this still stumps so many people. ‘Few’ should be used to define a small number of countable (discrete) items (e.g., individuals, quadrats, plots). ‘Less’ should be applied to a measurable, continuous variable (covariate) that cannot be easily discretised (e.g., water, biomass, carbon). If you ever see someone write ‘less individuals’, get out the big red pen.
  • DATA – While on the subject of quantification, the word ‘data’ should always be followed by plural forms of the verbs (e.g., ‘… the data are…’; ‘… the data were…’). A singular ‘datum’ is one measurement and requires the singular form. A ‘dataset’ is a single group of data, so it too can use the singular form. If you want to communicate that your sample size was too small (for your intended purposes), you need to write ‘too few data’.
  • MIGHT/CAN versus MAY – I’ve often got this one wrong too. ‘May’ implies doubt or permission, so it is most often better to use ‘can’ or ‘might’ (where appropriate) when you expressly mean ‘under certain circumstances’.
  • THAT versus WHICH – This is not an easy one, and for a full discussion, visit this link. In the most basic description of the difference, ‘that’ usually introduces essential information in a restrictive clause, whereas ‘which’ introduces additional information in a non-restrictive clause. Quoting from the link given above provides some more clarity:

“What is FASCINATING to me is that . . . one way to determine . . . the correct word . . . is to ask the question, ‘Does the clause clarify which of several possibilities is being referred to?’ If the answer is yes, then the correct word to use is that. If the answer is no, the correct word to use is which.”

Seems somewhat counter-intuitive, but it’s correct (hence the confusion).

CJA Bradshaw

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl





Don’t torture your readers

9 02 2009

This may seem a little off-topic for ConservationBytes.com, but I thought it pertinent to communicate how bad English hampers the understanding, popularity and implementation of good conservation science. I’ve started a list of common errors, unnecessary jargon, bad phrasing, archaic usage and overly complex constructions that I often see in conservation writing. Many of these are personal preferences, but I try to justify my suggested alternative in each case. Some of these apply to general English writing, others to science only, and others just to conservation/ecological fields. My hope is that students and young researchers can use my advice to improve the clarity of their writing. This first list is only preliminary – later posts in this theme will appear as I record more examples.

  • CONDUCT (as in ‘… we conducted the experiment…’) – What is wrong with ‘do/did’? I have never seen a scientist ‘conduct’ anything, but I have seen a few good operas.
  • PERFORM – See ‘conduct’. While some scientists would probably be more effective Thespians, let’s keep the theatre out of science.
  • VERY (as in ‘… there are very few species…’ – ‘Very’ has no place in scientific writing – I defy anyone to quantify what it means (i.e., it has an entirely subjective interpretation).
  • QUITE – See ‘very’.
  • SITUATED (as in ‘… our study area was situated in…’) – Simplify to ‘is/was’. Much easier, isn’t it?
  • SIGNIFICANT (as in ‘…this result has significant implications for…’; ‘… significant scientific advances…’; ‘… the functional significance of…’; ‘… can play a significant role…’ – This is probably the most abused word in science today. All the former examples mean nothing and are entirely dependent on the subjective position of the reader. Used without a statistical meaning per se (but more on the abuses of ‘significance’ as an arbitrary statistical paradigm in a later post), ‘significant’ and her sisters (e.g., ‘significantly’, ‘significance’) have no more place in scientific writing than ‘very’. Students often invoke this word simply to sound more scientific. Rubbish.
  • TO BOLDLY GO (i.e., any split infinitive; I couldn’t resist using one of the more infamous split infinitives) – I believe the jury is out really on the acceptable use of split infinitives, and I may be losing the battle, but an infinitive (for those of you who are grammatically challenged, an ‘infinitive’ is the base form of the verb prior to conjugation) can never be split by an adverb in English. How many times have you seen ‘… to significantly affect…’, ‘… to adequately measure…’ or ‘… to properly test…’. Sorry, all wrong (should be ‘… to affect significantly…’, etc.)
  • 10m (as in ‘… transects were set every 10m along…’) – You cannot write ’10metres’, so why, oh why, do people insist on sticking unit abbreviations next to the number? It should be ’10 m’!
  • i.e./e.g. – These abbreviations, id est and exempli gratia, literally mean ‘that is’ and ‘for the sake of example’, respectively. They are two words abbreviated each, so a full stop is required after each letter. Absolute correctness normally dictates the addition of a comma after the final full stop, but many journals drop the comma for whatever reason.
  • cf.confer (compare). It is one word, so its abbreviation requires a single full stop after the ‘f’.
  • its/it’s – Why is it so difficult for people to understand this one (especially in Australia)? In almost every other circumstance, an apostrophe followed by an ‘s’ indicates possession to a singular noun, as in ‘…the transect’s divisions’, ‘…the nearest neighbour’s value…’, etc. When the noun in question is plural, then the apostrophe sits nicely outside the terminal ‘s’ (e.g., ‘… the species’ attributes…’). This is a quasi-universal law EXCEPT for its/it’s. In this case ‘it’s’ is the contraction of ‘it is’, so ‘its’ becomes the possessive form. So, you can write ‘…its burrow…’, but ‘…it’s burrow…’ is incorrect. Still confused? There’s a simple way to remember – whenever you see ‘it’s’ in front of something, say ‘it is’ to yourself and see if the phrase makes sense. If it doesn’t, then it should be ‘its’.
  • CONTRACTIONS (e.g., ‘can’t’, ‘won’t’, ‘it’s’) – These are colloquial forms and should never be used in a scientific manuscript.
  • IN ORDER TO (as in ‘… in order to compare the plots…’) – What’s wrong with just ‘to’? I have rarely seen a situation requiring ‘in order to’. Unnecessary verbiage.
  • HAS BEEN SHOWN TO (as in ‘… is a species that has been shown to demonstrate a…’). There is simply no need for this verbiage. Simply state ‘…is a species that demonstrates a…’ and then reference the statement properly at the end of the sentence.
  • ABBREVIATIONS, ACRONYMS AND INITIALISMS – Use sparingly, if at all. They are often discipline-specific and have no meaning outside relatively small circles.
  • UTILISE – Just write ‘use’. For some reason people believe ‘utilise’ sounds more technical. Rubbish.

CJA Bradshaw

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to Ma.gnoliaAdd to TechnoratiAdd to Furl