How much is that iguana in the window?

25 08 2020

In our latest study, we examine the downstream effects of publicising an elevated species description for a reptile that is highly prized in the international commercial wildlife trade.

We describe how iguanas from an insular population of the common green iguana (Iguana iguana) entered commercial trade shortly after an announcement was made indicating that the population would be described as a new species.

The international commercial wildlife trade presents a known risk factor for wild populations of threatened species. One organisation in particular regulates the international trade in species — the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES).

Although most people probably know about the illegal practices involving iconic elephants and rhinos, reptiles are also targeted and traded. For example, after its discovery and description in 2016, and even though locality data were safeguarded, China’s endemic Mountain spiny crocodile newt (Echinotriton maxiquadratus) quickly entered the trade. This put conservation pressure on this small-range species (1, 2). Therefore, CITES signatory countries placed this species on its Appendix II in 2019, which lists animals and plants in need of protection.  

Read the rest of this entry »




Error-free genetic repositories: case of amphibians

18 08 2020

In our new study, we curated > 39,000 amphibian mitochondrial DNA (mtDNA) sequences from GenBank, identified > 2,000 sequencing and taxonomic errors, and published the quality-checked records as a curated dataset with an automated workflow in R. High-quality genetic data should help quantify and protect the diversity of the most threatened vertebrate group on Earth.

frogs

Upper left: species of Boophis from Andasibe, Madagascar. Upper right: Dendropsophus anceps from State of Rio de Janeiro, Brazil. Lower left; Dendropsophus bipunctatus from State of Rio de Janeiro, Brazil. Lower right: Bufo bufo from Gelderland, The Netherlands. All images from the author.

Scientists from a broad range of biological disciplines use genetic information like DNA sequences to test ecological and evolutionary hypotheses. Critically, genetics are today essential for naming species and therefore quantifying biodiversity, as well as determining where species live and how many individuals of a species occur in the wild.

Researchers are routinely asked, and more recently frequently required, by scientific journals to submit their DNA sequences to GenBank (among other public repositories of genetic data) as a requirement for publishing a paper. Although GenBank provides some quality controls (e.g., to filter sequences with bacterial contaminants and those from other kingdoms), authors are responsible for the quality of their genetic data and have full freedom to assign these to species in the taxonomy database of GenBank. Notably, once sequences have been deposited in GenBank, records are rarely updated in light of identified errors often resulting from taxonomic progress.

Two important notions emerge from the former status quo: Read the rest of this entry »





Many animals won’t cope with climate change without access to ample drinking water

12 08 2020

Climate change implies change in temperature and water, and both factors shape species’ tolerances to thermal stress. In our latest article, we show that lack of drinking water maximises differences in tolerance to high temperatures among populations of Iberian lizard species.

drinking

Climate change is a multidimensional phenomenon comprising temporal and spatial shifts in both temperature and precipitation (1). How we perceive climate change depends on whether we measure it as shift in (i) mean conditions (e.g., the mean air temperature or rainfall over a decade within a given territory), (ii) magnitude or frequency of extreme conditions (e.g., the frequency of floods or tornados or the number of days with temperatures or rainfall above or below a given threshold), or (iii) speed at which mean or extreme conditions change in space and/or time.

In aquatic ecosystems, climate change further alters water acidity, oxygen dissolution and melting of ice. However, many people, including some scientists, tend to equate climate change erroneously with increased mean temperatures. Psychologists have made the semantic point that the use of the expressions climate change and global warming as synonyms can give mixed messages to politicians, and society in general, about how serious and complex the climate emergency we are facing really is (2, 3) — see NASA’s simple-worded account on the subject here.

In our latest article (4), we reviewed the ecological literature to determine to what extent ecologists investigating the tolerance of terrestrial animals to high temperatures have looked at thermal effects over water effects. It turns out, they were five times more likely to examine temperature over water.

cb_BAAE_WaterLizardsNetwork

Frequency of correlations between climate (air temperature versus precipitation) and tolerance to high temperature of terrestrial fauna in 64 papers published in the ecological literature (thickest link = 36, thinnest link = 2) following a systematic literature review in Scopus (4).

This is counterintuitive. Just imagine you have been walking under the sun for several hours on one of those dog days of summer, and you are offered to choose between a sunshade or a bottle of water. I’d bet you’d choose the bottle of water.

Read the rest of this entry »





Double standards: climate change vs. COVID-19

3 08 2020

Both anthropogenic climate change and the coronavirus pandemic entail serious health risks. Why then do climatologists lack the public credibility and political repercussions that doctors have? Preventing the aggravation of the climate emergency is possible if we react to it in the same way we are reacting to the pandemic, essentially, following the advice of the scientific community.

 

We have as much uncertainty regarding the coronavirus COVID-19 that causes acute respiratory failure (SARS-CoV-2) as we do about human-made greenhouse gases causing climate change.

Both problems are currently costing (and will cost) trillions to national economies. But the main difference between the two when it comes to public perception is not economic but temporal. The virus has changed our lives in days to months whereas climate change is taking years to decades to do so. This short-termism about how we respond to the pace of an emergency has been sculped in our genes by evolution (1) and contaminates politics.

Early this year, after deriding the onset of the pandemic, many climate change-denialist leaders (the obvious picks are Trump, Bolsonaro, and Johnson [note that Johnson modified his public views on climate change when becoming UK foreign secretary in 2016]) had to swallow their own words and honour their political profession when human corpses started to pile up in their hospitals. Read the rest of this entry »








%d bloggers like this: