Prioritising your academic tasks

18 04 2018

The following is an abridged version of one of the chapters in my recent book, The Effective Scientist, regarding how to prioritise your tasks in academia. For a more complete treatise of the issue, access the full book here.

splitting tasks

Splitting tasks. © René Campbell

How the hell do you balance all the requirements of an academic life in science? From actually doing the science, analysing the data, writing papers, reviewing, writing grants, to mentoring students — not to mention trying to have a modicum of a life outside of the lab — you can quickly end up feeling a little daunted. While there is no empirical formula that make you run your academic life efficiently all the time, I can offer a few suggestions that might make your life just a little less chaotic.

Priority 1: Revise articles submitted to high-ranked journals

Barring a family emergency, my top priority is always revising an article that has been sent back to me from a high-ranking journal for revisions. Spend the necessary time to complete the necessary revisions.

Priority 2: Revise articles submitted to lower-ranked journals

I could have lumped this priority with the previous, but I think it is necessary to distinguish the two should you find yourself in the fortunate position of having to do more than one revision at a time.

Priority 3: Experimentation and field work

Most of us need data before we can write papers, so this is high on my personal priority list. If field work is required, then obviously this will be your dominant preoccupation for sometimes extended periods. Many experiments can also be highly time-consuming, while others can be done in stages or run in the background while you complete other tasks.

Priority 4: Databasing

This one could be easily forgotten, but it is a task that can take up a disproportionate amount of your time if do not deliberately fit it into your schedule. Well-organised, abundantly meta-tagged, intuitive, and backed-up databases are essential for effective scientific analysis; good data are useless if you cannot find them or understand to what they refer. Read the rest of this entry »