We’re sorry, but 50/500 is still too few

28 01 2014

too fewSome of you who are familiar with my colleagues’ and my work will know that we have been investigating the minimum viable population size concept for years (see references at the end of this post). Little did I know when I started this line of scientific inquiry that it would end up creating more than a few adversaries.

It might be a philosophical perspective that people adopt when refusing to believe that there is any such thing as a ‘minimum’ number of individuals in a population required to guarantee a high (i.e., almost assured) probability of persistence. I’m not sure. For whatever reason though, there have been some fierce opponents to the concept, or any application of it.

Yet a sizeable chunk of quantitative conservation ecology develops – in various forms – population viability analyses to estimate the probability that a population (or entire species) will go extinct. When the probability is unacceptably high, then various management approaches can be employed (and modelled) to improve the population’s fate. The flip side of such an analysis is, of course, seeing at what population size the probability of extinction becomes negligible.

‘Negligible’ is a subjective term in itself, just like the word ‘very‘ can mean different things to different people. This is why we looked into standardising the criteria for ‘negligible’ for minimum viable population sizes, almost exactly what the near universally accepted IUCN Red List attempts to do with its various (categorical) extinction risk categories.

But most reasonable people are likely to agree that < 1 % chance of going extinct over many generations (40, in the case of our suggestion) is an acceptable target. I’d feel pretty safe personally if my own family’s probability of surviving was > 99 % over the next 40 generations.

Some people, however, baulk at the notion of making generalisations in ecology (funny – I was always under the impression that was exactly what we were supposed to be doing as scientists – finding how things worked in most situations, such that the mechanisms become clearer and clearer – call me a dreamer).

So when we were attacked in several high-profile journals, it came as something of a surprise. The latest lashing came in the form of a Trends in Ecology and Evolution article. We wrote a (necessarily short) response to that article, identifying its inaccuracies and contradictions, but we were unable to expand completely on the inadequacies of that article. However, I’m happy to say that now we have, and we have expanded our commentary on that paper into a broader review. Read the rest of this entry »

Terrestrial biodiversity’s only chance is avoided deforestation

24 01 2014

farming forestsToday I was shocked, stunned and pleasantly (for a change) surprised. Australia has its first ‘avoided deforestation’ carbon farming project.

It is understandable that this sort of news doesn’t make the Jane & Joe Bloggs of the world stand up and cheer, but it should make conservation biologists jump for bloody joy.

So why exactly am I so excited about the setting aside of a mere 9000 ha (90 km2, or 10 × 9 km) of semi-arid scrub in western New South Wales? It’s simple – nothing can replace the biodiversity or carbon value of primary forest. In other words, forest restoration – while laudable and needed – can never achieve what existing forest already does. We know now from various parts of the world that biodiversity is nearly always much higher in primary forest, and that the carbon structure of the forest (especially below-ground carbon) can take centuries to recover.

Another problem with restoration – and if you’ve ever been involved in any tree planting yourself, you’ll know what I mean – is that it’s incredibly expensive, time-consuming and slow. Wouldn’t it make more financial sense just to save forests instead of trying to rebuild them?

Of course it is, so the logical conclusion from a conservation perspective is to save primary forest first, then worry about restoration next. The problem is, there are few, if any, financial incentives for keeping forests standing in the private sector. The stumbling rise of the carbon economy is a potential resolution to this problem, although neither the Kyoto Protocol nor most national carbon-trading schemes adequately account for the carbon value of existing forests.

Up until today, even Australia didn’t have any examples.

Read the rest of this entry »

Noisy oceans

20 01 2014
killers & boats
Killer whales are social animals that navigate all oceans and seas between the Arctic and Antarctica – they can be regarded eusocial since reproduction ceases around 40 years of age and menopausal females help care for offspring: like humans [13, 14]. Group cohesion in killer whales relies on a complex repertoire of vocalisations including clicks, whistles and calls. Sounds are instrumental for prey searching, orientation and communication. Foote [5] focused on calls, which are made up of series of discrete sounds that resemble squeaks, screams, and squawks to the human ear. It has been postulated that individuals learn to vocalise by imitation of peers of the same pod, and that only the base structure has a genetic, hence heritable, component [15]. Regardless, pods develop regional dialects. Those dialects, along with aspects of diet, genetics, morphology and behaviour, differentiate the three main lineages of killer whales (resident, transient and open sea) that might have been genetically isolated for ~ 150 to 700 thousand years and, potentially represent different taxa [16, 17]. The species might abandon the IUCN conservation category of ‘Data Deficient’ as soon its taxonomic uncertainty is resolved.Resident killer whales form matrilineal groups of 2 to 15 individuals  (the matriarch and her offspring) – known as pods, in turn subdivided into subpods centred around grandmothers and great-grandmothers. The Southern Resident population is regarded as an acoustic clan comprising 3 pods currently numbering 81 individuals = 26 (J pod) + 19 (K pod) + 36 (L pod) (2013 survey), among whom the matriarch Granny is the oldest at 103 years! This clan feeds mainly on fish, and dwells in the coastal waters between British Columbia (Canada) and Washington State (USA), particularly south of Vancouver Island – nothing is known about where they spend the winter. The clan lost 20 % of its members between 1995 & 2001, and 13 more by 2013, and now faces the decline of its main prey: Chinook salmon (Oncorhynchus tshawytscha) [18]. The two pics show two sub pods of this clan swimming close to a whale-watching boat near Friday Harbour (San Juan Island) and a Chinese ship at Puget Sound (Seatle, USA). Photo credits: Marla Holt, NOAA/NMFS Northwest Fisheries Sciences Center.

Acoustic pollution has become a transnational issue, particularly in marine ecosystems [1] by virtue of the physical fact that sounds travel in water farther and faster than in air. In our noisy, modern world, many species are now forced to modify their vocal repertoire in response to noise. The pivotal social role that vocalisations play in all cetacean species makes these predators and filter feeders particularly vulnerable to this environmental problem.

Last night, an ambulance siren woke me, only seconds before the neighbour’s washing machine started spinning, and a good friend of mine rang from overseas. Gradually more and more people are living in societies plugged in to noisy mechanical and electronic devices 24 hours a day, 356 days a year.

Engine-powered vehicles are the main source of anthropogenic noise, and their numbers can grow even at a higher rate than the human population – so spreading not only diseases [2] but also decibels over a global network of travelling routes. In an ecological context, we refer to noise as a kind of sound (= energy wave detected by an auditory system) that is not considered a biologically meaningful cue by wildlife (including us) and might also cause physiological stress. Experts refer to ‘masking’ as those situations in which noise interferes the perception or emission of sounds that matter to the life history of species – a global concern in both terrestrial [3] and aquatic [4] ecosystems.

Andy Foote [5] has assessed the effect of vessel traffic on the vocal behaviour of the three pods forming the Southern Resident population of killer whales (Orcinus orca¸ see video). He recorded calls from these cetaceans from a ship, and through an array of submarine microphones in Haro Straight, between San Juan Island (Washington State, USA) and Vancouver Island (British Columbia, Canada). Between the 1990s and the 2000s, local traffic density had multiplied by a factor of 5 and currently, > 20 whale-watching vessels follow these killer whales daily among an active fleet of > 70 commercial vessels. Foote compared call length through 35 hours of underwater killer whale recordings over three periods (1977-1981, 1989-1992, 2001-2003), each comprising situations in which the pods were exposed to both noisy and quiet environments. Over the study, call length varied between 0.3 and 2.0 seconds; while on average, L-pod calls were the shortest (0.6-0.8 seconds), and J-pod calls the longest (0.9-1.0 seconds). Read the rest of this entry »

You know it’s hot when it’s too hot to ….

16 01 2014
© T. Brandon

© T. Brandon

My post’s title might be a good candidate title for a punk song in the 2030s (maybe by a re-incarnation of the Dead Kennedys).

I am currently sitting under my solar-powered ceiling fan as Adelaide is declared the world’s hottest city (and not in the funky, cultural, fun way), and I can’t help but contemplate climate change models predicting the fate of biodiversity over the coming decades. Because it’s far, far too hot to work outside, I’m perusing the latest interesting articles on the subject and I came across this recent little gem.

Also recommended on F1000Prime by Ary Hoffman, the paper, Using physiology to predict the responses of ants to climatic warming, by Sarah Diamond and colleagues touches on many aspects of climate predictions that need to be considered. I summarise these briefly here.

While no physiologist, I have dabbled in the past, although up until quite recently I didn’t see that physiology per se had much to do with conservation. It turns out that climate change has spawned an entire sub-discipline called ‘conservation physiology‘, which focuses inter alia on how species can/will/might respond and adapt to a warmer, climatically disrupted world.

What struck me about Diamond & colleagues’ paper was that yet again, it’s not as simple as heat-stressing a species experimentally and making a prediction on its future distribution (ecology is complex). No, the complexity comes in various forms that makes each species a little different from each other. Using North American ant species subjected to various warming scenarios in large (5 m) enclosures, they found the following: Read the rest of this entry »

Essential role of carnivores on the wane

10 01 2014
© Luca Galuzzi www.galuzzi.it

© Luca Galuzzi http://www.galuzzi.it

This interesting review has just come out in Science, and because I was given a heads-up about it, I decided to do a F1000 recommendation. That’s more or less what follows, with some additional thoughts.

Ripple and colleagues can perhaps be excused for stating what might appear to many ‘in the biz’ to be blatantly obvious, but their in-depth review of the status of the world’s carnivores is a comprehensive overview of this essential guild’s worldwide plight. It not only represents an excellent teaching tool, the review elegantly summarises the current status of these essential ecosystem engineers.

The world’s 245 terrestrial carnivores might seem to be ecologically redundant to the informed given their natural rarity, low densities and cryptic behaviour, but nothing could be farther from the truth. Ecologists have only within the last decade or so revealed the essential ecosystem functions of these species (see former posts on CB.com here, here and here). The review focuses on the largest and most well-studied species, but the trends likely apply across most of the order. Read the rest of this entry »

More species = more resilience

8 01 2014

reef fishWhile still ostensibly ‘on leave’ (side note: Does any scientist really ever take a proper holiday? Perhaps a subject for a future blog post), I cannot resist the temptation to blog about our lab’s latest paper that just came online today. In particular, I am particularly proud of Dr Camille Mellin, lead author of the study and all-round kick-arse quantitative ecologist, who has outdone herself on this one.

Today’s subject is one I’ve touched on before, but to my knowledge, the relationship between ‘diversity’ (simply put, ‘more species’) and ecosystem resilience (i.e., resisting extinction) has never been demonstrated so elegantly. Not only is the study elegant (admission: I am a co-author and therefore my opinion is likely to be biased toward the positive), it demonstrates the biodiversity-stability hypothesis in a natural setting (not experimental) over a range of thousands of kilometres. Finally, there’s an interesting little twist at the end demonstrating yet again that ecology is more complex than rocket science.

Despite a legacy of debate, the so-called diversity-stability hypothesis is now a widely used rule of thumb, and its even implicit in most conservation planning tools (i.e., set aside areas with more species because we assume more is better). Why should ‘more’ be ‘better’? Well, when a lot of species are interacting and competing in an ecosystem, the ‘average’ interactions that any one species experiences are likely to be weaker than in a simpler, less diverse system. When there are a lot of different niches occupied by different species, we also expect different responses to environmental fluctuations among the community, meaning that some species inherently do better than others depending on the specific disturbance. Species-rich systems also tend to have more of what we call ‘functional redundancy‘, meaning that if one species providing an essential ecosystem function (e.g., like predation) goes extinct, there’s another, similar species ready to take its place. Read the rest of this entry »